Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Publication year range
1.
Pharmaceutics ; 14(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365098

ABSTRACT

Conventional photothermal therapy (PTT) irradiates the tumor tissues by elevating the temperature above 48 °C to exert thermal ablation, killing tumor cells. However, thermal ablation during PTT harmfully damages the surrounding normal tissues, post-treatment inflammatory responses, rapid metastasis due to the short-term mass release of tumor-cellular contents, or other side effects. To circumvent this limitation, mild-temperature photothermal therapy (MTPTT) was introduced to replace PTT as it exerts its activity at a therapeutic temperature of 42-45 °C. However, the significantly low therapeutic effect comes due to the thermoresistance of cancer cells as MTPTT figures out some of the side-effects issues. Herein, our current review suggested the mechanism and various strategies for improving the efficacy of MTPTT. Especially, heat shock proteins (HSPs) are molecular chaperones overexpressed in tumor cells and implicated in several cellular heat shock responses. Therefore, we introduced some methods to inhibit activity, reduce expression levels, and hinder the function of HSPs during MTPTT treatment. Moreover, other strategies also were emphasized, including nucleus damage, energy inhibition, and autophagy mediation. In addition, some therapies, like radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, exhibited a significant synergistic effect to assist MTPTT. Our current review provides a basis for further studies and a new approach for the clinical application of MTPTT.

2.
Mater Sci Eng C Mater Biol Appl ; 112: 110887, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409043

ABSTRACT

Carbon nanotube (CNT) has aroused much attention in biomedical field. However, the cytotoxicity and aggregation are critical factors that affect the application of carbon nanotube (CNT). Herein, gelatin was grafted on the surface of CNT via mussel-inspired method. The gelatin modified CNT can disperse homogeneously in water. The in vitro test showed that gelatin modified CNT showed much better biocompatibility than the native CNT, which may improve its potential application in biomedical field.


Subject(s)
Biocompatible Materials/chemistry , Gelatin/chemistry , Nanotubes, Carbon/chemistry , Animals , Biocompatible Materials/pharmacology , Cell Line , Cell Survival/drug effects , Indoles/chemistry , Mice , Polymers/chemistry , Surface Properties
3.
Front Pharmacol ; 11: 431, 2020.
Article in English | MEDLINE | ID: mdl-32322206

ABSTRACT

Bacterial infection has been a critic problem for implant infections. Poly(L-lactide) (PLLA) membrane has great potential for Guided bone regeneration (GBR), however, PLLA lack antibacterial property and thus may face bacterial infections. In this work, a mussel inspired method was used to treat PLLA membrane with dopamine and formed polydopamine (PDA) coated PLLA (PLLA@PDA), and then silver Nanoparticles (AgNPs) was immobilized on the surface of PLLA via the reduction effect of PDA. The XPS results showed that the silver element contents may be tuned from 1.6% to 15.4%. The AgNPs coated PLLA (PLLA@Ag) showed good antibacterial property (98.3% bactericidal efficiency may be obtained) and good biocompatibility, implying that the PLLA@Ag membrane have potential application as antibacterial GBR membrane, which may enhance the application of PLLA.

4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 33(4): 401-4, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26552245

ABSTRACT

OBJECTIVE: To investigate the effect of three different impression methods on the marginal fit of all-ceramic crowns. The three methods include scanning silicone rubber impression, cast models, and direct optical impression. METHODS: The polymethyl methacrylate (PMMA) material of a mandibular first molar in standard model was prepared with 16 models duplicated. The all-ceramic crowns were prepared using three different impression methods. Accurate impressions were made using silicone rubber, and the cast models were obtained. The PMMA models, silicone rubber impressions, and cast models were scanned, and digital models of three groups were obtained to produce 48 zirconia all-ceramic crowns with computer aided design/computer aided manufacture. The marginal fit of these groups was measured by silicone rubber gap impression. Statistical analysis was performed with SPSS 17.0 software. RESULTS: The marginal fit of direct optical impression groups, silicone rubber impression groups, cast model groups was (69.18±9.47), (81.04±10.88), (84.42±9.96) µm. A significant difference was observed in the marginal fit of the direct optical impression groups and the other groups (P<0.05). No statistically significant difference was observed in the marginal fit of the silicone rubber impression groups and the cast model groups (P>0.05). CONCLUSION: All marginal measurement sites are clinically acceptable by the three different impression scanning methods. The silicone rubber impression scanning method can be used for all-ceramic restorations.


Subject(s)
Crowns , Dental Porcelain , Computer-Aided Design , Dental Marginal Adaptation , Dental Prosthesis Design , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...