Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 912: 169002, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040347

ABSTRACT

Lake ice, as a crucial component of the cryosphere, serves as a sensitive indicator of climate change. Fine-scale monitoring of spatiotemporal patterns in lake ice phenology holds significant importance in scientific research and environmental management. However, the rapid and dynamic nature of the freeze-thaw process of lake ice poses challenges to existing methods, resulting in their limited application in small lakes. In this study, we propose a novel approach of investigating ice phenology of lakes in various sizes. We conducted a case study in Hoh Xil, known for its vulnerability to climate change and a wide distribution of small lakes, to analyze the ice phenology of 372 lakes (>1 km2) during 2017-2021. Firstly, ensemble machine-learning model was developed for lake ice identification from Landsat-8/9 and Sentinel-2 A/B imagery. The accuracy evaluation reveals the overall good performance for ice extraction results based on Landsat-8/9 (97.03 %) and Sentinel-2 A/B (96.89 %). Next, the XGBoost models were employed to reconstruct ice coverages on unobserved dates for the freezeup and breakup periods, respectively. Totally, 744 XGBoost models were constructed for the study lakes, and the majority of them perform well. Based on the reconstructed daily ice coverage, phenology parameters could be extracted for examining the spatiotemporal characteristics of ice cover and possible relationships with lake sizes and terrains. From early-October to early-November, the Hoh Xil lakes freeze from the northwest to the southeast, while the breakup period starts in late-March and lasts until late-June. Moreover, the results indicate relatively small variability in freezeup-end dates among lakes, but significant differences in breakup dates, showing a greater sensitivity to temperature variations. Furthermore, ice phenology in small lakes exhibit stronger consistency with subtle climatic fluctuations. The results highlight the significant role of ice phenology in small lakes, as they dominate the overall tendency of ice phenology in Hoh Xil.

2.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2958-2968, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997406

ABSTRACT

Wetlands serve as atmospheric carbon dioxide (CO2) sinks, as well as atmospheric methane (CH4) source due to the anaerobic soil environment. Although some studies report that the CH4 emission from wetlands partially offset their net CO2 uptake, there is no global data analysis on the offset of net ecosystem exchange of CO2 (NEE) by CH4 emission in wetland ecosystems. In this study, we collected the data sets of NEE and CH4 flux which were simultaneously measured in the inland wetlands (peatland and non-peatland wetland) and coastal wetlands (seagrass beds, salt marshes and mangroves) around the world. The results showed that all types of wetlands were atmospheric CO2 sink, with the NEE values ranking as follows: mangrove (-2011.0 g CO2·m-2·a-1) < salt marsh (-1636.6 g CO2·m-2·a-1) < non-peatland wetland (-870.8 g CO2·m-2·a-1) < peatland (-510.7 g CO2·m-2·a-1) < seagrass bed (-61.6 g CO2·m-2·a-1). When CH4 flux being converted into CO2-equivalent flux (CO2-eq flux) based on the 100-year scale global warming potentials, we found that the CH4 emissions partially offset 19.4%, 14.0%, 36.1%, 64.9% and 60.1% of the net CO2 uptake in seagrass beds, salt marshes, mangroves, non-peatland wetland and peatland, respectively. Over the 20-year scale, CH4 emissions partially offset 57.3%, 41.4%, 107.0%, 192.0% and 177.3% of the net CO2 uptake, respectively. Some mangroves, peatlands, and non-peatland wetlands acted as net CO2 equivalent source. Over the 100-year scale, the net greenhouse gas balance of each wetland ecosystem was negative value, which indicated that even accounting CH4 emission, wetland ecosystem was still an atmospheric carbon sink. Our results indicated that clarifying the main regulation mechanism of CH4 emission from wetland ecosystems and proposing reasonable CH4 reduction measures are crucial to maintain the carbon sink function in wetland ecosystems, and to mitigate the trend of climate warming.


Subject(s)
Ecosystem , Wetlands , Carbon Sequestration , Carbon Dioxide , Methane
3.
Environ Pollut ; 336: 122470, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37657723

ABSTRACT

Dinotefuran, a third-generation neonicotinoid insecticide, is widely utilized in agriculture for pest control; however, its environmental consequences and risks to non-target organisms remain largely unknown. Bombyx mori is an economically important insect and a good toxic detector for environmental assessments. In this study, ultrastructure analysis showed that dinotefuran exposure caused an increase in autophagic vesicles in the silk gland. Dinotefuran exposure triggered elevated levels of oxidative stress in silk glands. Reactive oxygen species, oxidized glutathione disulfide, glutathione peroxidase, the activities of UDP glucuronosyl-transferase and carboxylesterase were induced in the middle silk gland, while malondialdehyde, reactive oxygen species, superoxide dismutase , oxidized glutathione disulfide were increased in the posterior silk gland. Global transcription patterns revealed the physiological responses were induced by dinotefuran. Dinotefuran exposure substantially induced the expression levels of many genes involved in the mTOR and PI3K - Akt signaling pathways in the middle silk gland, whereas many differentially expressed genes involved in fatty acid and pyrimidine metabolism were found in the posterior silk gland. Additionally, functional, ultrastructural, and transcriptomic analysis indicate that dinotefuran exposure induced an increase of autophagy in the silk gland. This study illuminates the toxicity effects of dinotefuran exposure on silkworms and provides new insights into the underlying molecular toxicity mechanisms of dinotefuran to nontarget organisms.

4.
Nano Lett ; 23(14): 6330-6336, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37440701

ABSTRACT

Membrane morphology and its dynamic adaptation regulate many cellular functions, which are often mediated by membrane proteins. Advances in DNA nanotechnology have enabled the realization of various protein-inspired structures and functions with precise control at the nanometer level, suggesting a viable tool to artificially engineer membrane morphology. In this work, we demonstrate a DNA origami cross (DOC) structure that can be anchored onto giant unilamellar vesicles (GUVs) and subsequently polymerized into micrometer-scale reconfigurable one-dimensional (1D) chains or two-dimensional (2D) lattices. Such DNA origami-based networks can be switched between left-handed (LH) and right-handed (RH) conformations by DNA fuels and exhibit potent efficacy in remodeling the membrane curvatures of GUVs. This work sheds light on designing hierarchically assembled dynamic DNA systems for the programmable modulation of synthetic cells for useful applications.


Subject(s)
Nanostructures , Nanostructures/chemistry , Nucleic Acid Conformation , Nanotechnology/methods , DNA/chemistry , Unilamellar Liposomes , Lipids
5.
Chem Rev ; 123(7): 3976-4050, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36990451

ABSTRACT

DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.


Subject(s)
Nanostructures , DNA , Nanotechnology/methods
6.
Angew Chem Int Ed Engl ; 62(9): e202213992, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36423337

ABSTRACT

Control over multiple optical elements that can be dynamically rearranged to yield substantial three-dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom-up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.

7.
Cell Commun Signal ; 20(1): 155, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229856

ABSTRACT

Age-related macular degeneration (AMD), a progressive chronic disease of the central retina, is a leading cause of blindness worldwide. Activated macrophages recruited to the injured eyes greatly contribute to the pathogenesis of choroidal neovascularization (CNV) in exudative AMD (wet AMD). This study describes the effects of cyclooxygenase-2 (COX2)/prostaglandin E2 (PGE2) signalling on the macrophage activation and CNV formation of wet AMD. In a mouse model of laser-induced wet AMD, the mice received an intravitreal injection of celecoxib (a selective COX2 inhibitor). Optical coherence tomography (OCT), fundus fluorescein angiography (FFA), choroidal histology of the CNV lesions, and biochemical markers were assessed. The level of PGE2 expression was high in the laser-induced CNV lesions. Macrophage recruitment and CNV development were significantly less after celecoxib treatment. E-prostanoid1 receptor (EP1R)/protein kinase C (PKC) signalling was involved in M2 macrophage activation and interleukin-10 (IL-10) production of bone marrow-derived macrophages (BMDMs) in vitro. In addition, IL-10 was found to induce the proliferation and migration of human choroidal microvascular endothelial cells (HCECs). Thus, the PGE2/EP1R signalling network serves as a potential therapeutic target for CNV of the wet-type AMD. Video abstract.


Subject(s)
Choroidal Neovascularization , Interleukin-10 , Animals , Celecoxib/pharmacology , Choroidal Neovascularization/etiology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/metabolism , Cyclooxygenase 2 Inhibitors/therapeutic use , Dinoprostone/metabolism , Endothelial Cells/metabolism , Humans , Interleukin-10/metabolism , Macrophages/metabolism , Mice , Protein Kinase C/metabolism
8.
Front Vet Sci ; 9: 922867, 2022.
Article in English | MEDLINE | ID: mdl-35958306

ABSTRACT

In this study, we screened adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae (E. rhusiopathiae). Inactivated cells of E. rhusiopathiae strain HG-1 were prepared as the antigen in five adjuvanted inactivated vaccines, including a mineral-oil-adjuvanted vaccine (Oli vaccine), aluminum-hydroxide-gel-adjuvanted vaccine (Alh vaccine), ISA201-biphasic-oil-emulsion-adjuvanted vaccine (ISA201 vaccine), GEL02-water-soluble-polymer-adjuvanted vaccine (GEL vaccine), and IMS1313-water-soluble-nanoparticle-adjuvanted vaccine (IMS1313 vaccine). The safety test results of subcutaneous inoculation in mice showed that Oli vaccine had the most severe side effects, with a combined score of 35, followed by the ISA201 vaccine (25 points), Alh vaccine (20 points), GEL vaccine (10 points), and IMS1313 vaccine (10 points). A dose of 1.5LD50 of strain HG-1 was used to challenge the mice intraperitoneally, 14 days after their second immunization. The protective efficacy of Oli vaccine and Alh vaccine was 100% (8/8), whereas that of the other three adjuvanted vaccines was 88% (7/8). Challenge with 2.5LD50 of strain HG-1 resulted in a 100% survival rate, demonstrating the 100% protective efficacy of the Oli vaccine, followed by the GEL vaccine (71%, 5/7), IMS1313 vaccine (57%, 4/7), ISA201 vaccine (43%, 3/7), and Alh vaccine (29%, 2/7). Challenge with 4LD50 of strain HG-1 showed 100% (7/7) protective efficacy of the Oli vaccine and 71% (5/7) protective efficacy of the GEL vaccine, whereas the protective efficacy of other three adjuvanted vaccine was 14% (1/7). The Alh and GEL vaccines were selected for comparative tests in piglets, and both caused minor side effects. A second immunization with these two adjuvanted vaccines conferred 60 and 100% protective efficacy, respectively, after the piglets were challenged via an ear vein with 8LD100 of strain HG-1. After challenge with 16LD100 of strain HG-1, the Alh and GEL vaccines showed 40% and 100% protective efficacy, respectively. Our results suggested that GEL is the optimal adjuvant for an inactivated vaccine against E. rhusiopathiae.

9.
Nat Chem ; 14(8): 958-963, 2022 08.
Article in English | MEDLINE | ID: mdl-35725773

ABSTRACT

The cytoskeleton is an essential component of a cell. It controls the cell shape, establishes the internal organization, and performs vital biological functions. Building synthetic cytoskeletons that mimic key features of their natural counterparts delineates a crucial step towards synthetic cells assembled from the bottom up. To this end, DNA nanotechnology represents one of the most promising routes, given the inherent sequence specificity, addressability and programmability of DNA. Here we demonstrate functional DNA-based cytoskeletons operating in microfluidic cell-sized compartments. The synthetic cytoskeletons consist of DNA tiles self-assembled into filament networks. These filaments can be rationally designed and controlled to imitate features of natural cytoskeletons, including reversible assembly and ATP-triggered polymerization, and we also explore their potential for guided vesicle transport in cell-sized confinement. Also, they possess engineerable characteristics, including assembly and disassembly powered by DNA hybridization or aptamer-target interactions and autonomous transport of gold nanoparticles. This work underpins DNA nanotechnology as a key player in building synthetic cells.


Subject(s)
Artificial Cells , Metal Nanoparticles , Cytoskeleton/physiology , DNA , Gold , Nanotechnology
10.
Chem Biodivers ; 19(6): e202100753, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35560720

ABSTRACT

Aiming at the excellent killing effect of N-phenylmaleimide (N-PMI) on microorganisms, this article used structural simulation analysis, fluorescence analysis, confocal laser scanning microscope and SEM to find that the double bond in N-PMI could interact with the sulfur groups in the membrane protein, changing its conformation, rupturing the plasma membrane of the cell, leaking the contents, and ultimately causing the death of the microorganisms. Therefore, once the double bond participated in the polymerization, N-PMI lost its antimicrobial function. N-PMI could achieve azeotropic copolymerization with MMA through reactive extrusion polymerization. N-PMI with a content of 5 % can be evenly inserted into the PMMA chain segment during the copolymerization reaction, thereby increasing the Tg of pure PMMA by up to 15 °C, which provided the PMMA-co-PMI copolymer with resistance to boiling water sterilization advantageous conditions. In addition, N-PMI with a content of 5 % has little effect on the transparency of PMMA after participating in the copolymerization. Moreover, the trace amount of residual N-PMI made the material have excellent antimicrobial function, and the bacteriostatic zone is extremely small, which provided an excellent guarantee for the safety and durability of the material. As a medical biological material, the PMMA-co-PMI copolymer has a good industrialization application prospects.


Subject(s)
Anti-Infective Agents , Polymethyl Methacrylate , Anti-Bacterial Agents/pharmacology , Maleimides , Polymers/chemistry , Polymers/pharmacology , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology
11.
Int J Biol Macromol ; 209(Pt B): 1760-1770, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35490768

ABSTRACT

Rearing silkworms (Bombyx mori) using formula feed has revolutionized traditional mulberry feed strategies. However, low silk production efficiencies persist and have caused bottlenecks, hindering the industrial application of formula feed sericulture. Here, we investigated the effects of formula feed amino acid composition on silk yields. We showed that imbalanced amino acids reduced DNA proliferation, decreased Fib-H, Fib-L, and P25 gene expression, and caused mild autophagy in the posterior silk gland, reducing cocoon shell weight and ratio. When compared with mulberry leaves, Gly, Ala, Ser, and Tyr percentages of total amino acids in formula feed were decreased by 5.26%, while Glu and Arg percentages increased by 9.56%. These changes increased uric acid and several amino acids levels in the hemolymph of silkworms on formula feed. Further analyses showed that Gly and Thr (important synthetic Gly sources) increased silk yields, with Gly increasing amino acid conversion efficiencies to silk protein, and reducing urea levels in hemolymph. Also, Gly promoted endomitotic DNA synthesis in silk gland cells via phosphoinositide 3-kinase (PI3K)/Akt/target of rapamycin (TOR) signaling. In this study, we highlighted the important role of Gly in regulating silk yields in silkworms.


Subject(s)
Bombyx , Fabaceae , Morus , Amino Acids/metabolism , Animals , Bombyx/chemistry , Fabaceae/metabolism , Glycine/metabolism , Hemolymph/metabolism , Insect Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Silk/metabolism
12.
ACS Nano ; 16(4): 5284-5291, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35286063

ABSTRACT

The bacterial flagellar motor is a rotary machine composed of functional modular components, which can perform bidirectional rotations to control the migration behavior of the bacterial cell. It resembles a two-cogwheel gear system, which consists of small and large cogwheels with cogs at the edges to regulate rotations. Such gearset models provide elegant blueprints to design and build artificial nanomachinery with desired functionalities. In this work, we demonstrate DNA assembly of a structurally well-defined nanodevice, which can carry out programmable rotations powered by DNA fuels. Our rotary nanodevice consists of three modular components, small origami ring, large origami ring, and gold nanoparticles (AuNPs). They mimic the sun gear, ring gear, and planet gears in a planetary gearset accordingly. These modular components are self-assembled in a compact manner, such that they can work cooperatively to impart bidirectional rotations. The rotary dynamics is optically recorded using fluorescence spectroscopy in real time, given the sensitive distance-dependent interactions between the tethered fluorophores and AuNPs on the rings. The experimental results are well supported by the theoretical calculations.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry
13.
ACS Appl Mater Interfaces ; 14(3): 4562-4570, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35020359

ABSTRACT

With the rapid development of wearable electronics, a multifunctional and flexible strain sensor is urgently required. Even though enormous progress has been achieved in designing high-performance strain sensors, the conflict between high sensitivity and a large workable range still restricts their further advance. Herein, a "point to point" conductive network is proposed to design and fabricate a carbon black/polyaniline nanoparticles/thermoplastic polyurethane film (CPUF). The designed structure renders CPUF composites with a wide sensitive range (up to 680% strain), highly sensitive response with a low detection limit of 0.03% strain, and high gauge factor (GF) of 3030.8, together with good sensing stability, fast response/recovery time (80 ms/95 ms), and good durability even after 10000 stretching/releasing cycles. CPUF composites are assembled as wearable strain sensors with the ability of precisely detecting full-range human motions and organic solvents, showing a potential application in human-machine interaction and environmental monitoring.


Subject(s)
Biocompatible Materials/chemistry , Wearable Electronic Devices , Zinc/chemistry , Gels/chemistry , Humans , Materials Testing , Particle Size , Porosity , Surface Properties
14.
Sci Total Environ ; 807(Pt 1): 150772, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34619207

ABSTRACT

The flood storage of lakes and reservoirs plays an important role in flood regulation and control in floodplains. However, the flood storage capacity of lakes and reservoirs is ineffectively quantified at the basin scale due to the limited access to in-situ data and poor quality of optical satellite images in flooding seasons. To address this, taking a typical floodplain basin (the Poyang Lake basin) in the Yangtze as a study case, radar satellite data combined with measured bathymetry and digital elevation model data were utilized to reconstruct the time series of the water inundation area and water storage change of all lakes and reservoirs larger than 1 km2 during the once-in-a-generation flood event that occurred in 2020 (termed as the 2020 flood event hereafter). Results show that the flood storage capacity of Poyang Lake can reach the maximum at 12.18 Gt, and that for other lakes and reservoirs within the basin is approximately 2.95 Gt. It indicates a total flood-storage capacity of 15.13 Gt for the basin-scale lakes and reservoirs, approximately accounting for 45.02% of the terrestrial water storage change of the basin. The storage capacity of Poyang Lake was approximately four times larger than the entirety of other lakes and reservoirs in the basin despite that its maximum water inundation area is in the proportion of 2.58 times other water bodies. This finding indicates that the Poyang Lake provided the dominant contribution to flood storage among all the lakes and reservoirs in the basin. This study introduced a remote sensing approach to quantify the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions during the flood event, which could fill the insufficiently-quantified knowledge about dynamics of lakes and reservoirs in areas lacking full-covered in-situ data records. This study also helps to offer a quantitative basis to improve flood forecasting and control for the public authority, stakeholders, and decision-makers.


Subject(s)
Floods , Lakes , China , Environmental Monitoring , Remote Sensing Technology , Seasons , Water
15.
Sci Total Environ ; 802: 149928, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34464806

ABSTRACT

Climate change in recent decades led to the remarkable expansions for most lakes in endorheic basins of the Tibetan Plateau (TP). Enlarged lake inundation areas may pose adverse effects and potential threats on the local human living environment, especially for high-risk villages adjacent to rapidly expanding lakes. Taking a rapidly expanding lake, Angzi Co in the central TP as a study case, we investigated the flooding risk of lake growth on the local living environment and proposed an optimized solution of village relocation selection on the basis of satellite and unmanned aerial vehicle (UAV) remote sensing. The detection of spatiotemporal variations of Angzi Co using optical and altimetric satellite observations revealed a significant area and water level increase by 81.28 km2 and 5.78 m, respectively, from 2000 to 2020. We also assessed the vertical accuracy of multi-source digital elevation model (DEM) products using Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) altimetry data and further examined the flooding risk and potential influences of lake expansion on adjacent settlements (Guozha Village). Results indicated that UAV-DEM achieves excellent advantages in depicting details of lake shoreline variations and simulating potential submergence regions, followed by Advanced Land Observing Satellite World 3D DEM (AW3D DEM). Moreover, assuming that Angzi Co maintains the water level at a growth rate of 0.29 m/a (the average change rate during 2000-2020), the village will be submerged in approximate 10 years based on our assessment. Furthermore, we designed an optimal relocation site southwest of Guozha Village and approximately 3 km away based on the GIS-MVDA method and field investigations. An initial remote sensing-based approach for assessing the flooding risk from dramatic lake expansions in the TP and optimizing the village relocation site was proposed in this study to provide an essential scientific reference for formulating risk mitigation solutions under future climate change scenarios.


Subject(s)
Lakes , Remote Sensing Technology , Climate Change , Floods , Humans , Tibet
16.
Front Oncol ; 11: 752229, 2021.
Article in English | MEDLINE | ID: mdl-34868958

ABSTRACT

BACKGROUND: The goal of this study was to investigate the impact of mean corpuscular volume (MCV) in patients with esophageal squamous cell carcinoma (ESCC) who underwent surgical resection. METHODS: A total of 615 patients with ESCC who underwent esophagectomy were analyzed. Patients were divided into two groups according to the standard MCV: the high MCV group (>100 fl) and the low MCV group (≤100 fl). Survival analyses were performed to calculate overall survival (OS) and cancer-specific survival (CSS) and investigate the independent prognostic factors. RESULTS: Fifty-one patients (8.3%) were in the high MCV group, and the other 564 patients (91.7%) were defined as the low MCV group. MCV was significantly correlated with sex, habitual alcohol or tobacco use, tumor length, body mass index, and multiple primary malignancies (P < 0.05). Elevated MCV was significantly correlated with poor survival in univariate and multivariate analyses. However, in subgroup analyses, MCV was found to be correlated with survival only in patients with alcohol or tobacco consumption and not in patients without alcohol or tobacco consumption. CONCLUSIONS: Pretreatment MCV was correlated with survival in ESCC patients after esophagectomy. However, its prognostic value might only exist in patients with alcohol or tobacco consumption.

17.
Water Res ; 207: 117786, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34731665

ABSTRACT

There are some uncertainties of using chlorophyll a (Chla) concentrations in water surface to address phytoplankton dynamics, especially in large shallow lakes, because of the dramatic vertical migration of phytoplankton. The column-integrated algal biomass (CAB) can reflect the whole water column information, so it is considered as a better indicator for phytoplankton total biomass. An algal biomass index (ABI) and an empirical algorithm were proposed previously to measure algal biomass inside and outside euphotic zone from the Moderate Resolution Imaging Spectrometer (MODIS) data. A long-term CAB time series was generated in this study to clarify the temporal and spatial changes in phytoplankton and address its sensitivity to climatic factors in Lake Chaohu, a shallow eutrophic lake in China, from 2000 to 2018. Overall, the CAB for Lake Chaohu showed significant temporal and spatial dynamics. Temporally, the annual average CAB (total CBA within the whole lake) was increased at rate of 0.569 t Chla/y, ranging from 62.06±8.89 t Chla to 76.03±10.01 t Chla during the 19-year period. Seasonal and periodic variations in total CAB presented a bimodal annual cycle every year, the total CAB was highest in summer, followed by that in autumn, and it was the lowest in winter. The pixel-based CAB (total CAB of a unit water column), ranging from 112.42 to 166.85 mg Chla, was the highest in the western segment, especially its northern part, and was the lowest in the central parts of eastern and central segments. The sensitivity of CAB dynamics to climatic conditions was found to vary by region and time scale. Specifically, the change of pixel-based algal biomass was more sensitive to the temperature change on the monthly and annual scales, while wind speed impacted directly on the short-term spatial-temporal redistribution of algal biomass. High temperature and low wind speed could prompt the growth of total CAB for the whole lake, and the hydrodynamic situations affected by wind and so on determined the spatial details. It also indicated that Lake Chaohu may face more severe challenges with the future climatic warming. This study may serve as a reference to support algal bloom forecasting and early warning management for other large eutrophic lakes with similar problems.


Subject(s)
Lakes , Phytoplankton , Biomass , China , Chlorophyll A , Environmental Monitoring , Eutrophication
18.
Exp Eye Res ; 207: 108568, 2021 06.
Article in English | MEDLINE | ID: mdl-33839112

ABSTRACT

Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 µL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.


Subject(s)
Burns, Chemical/prevention & control , Corneal Neovascularization/prevention & control , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Eye Burns/chemically induced , Pyrrolidines/therapeutic use , Valine/analogs & derivatives , Angiogenesis Inhibitors , Animals , Biomarkers/metabolism , Blotting, Western , Burns, Chemical/enzymology , Burns, Chemical/pathology , Corneal Neovascularization/enzymology , Corneal Neovascularization/pathology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Eye Burns/enzymology , Eye Burns/pathology , Eye Proteins/metabolism , Humans , Immunoprecipitation , Lymphangiogenesis/drug effects , Mice , Mice, Inbred C57BL , Phosphorylation , Real-Time Polymerase Chain Reaction , Sodium Hydroxide , Valine/therapeutic use
19.
Sci Total Environ ; 753: 142194, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33207455

ABSTRACT

Phyllospheric microbes play a crucial role in the biological decomposition of plant litter in wetland ecosystems. Previous studies have mainly focused on single stages of decomposition process, and to date there have been no reports on dynamic changes in the composition of phyllospheric microbes during the multiple stages of decomposition from living plant to death. Here we investigated fungal and bacterial community succession in the leaf litter of Schoenoplectus tabernaemontani, a wetland plant species using sequencing of the both fungal ITS and bacterial 16S genes. Our results revealed that, over the whole period of decomposition, the fungal communities underwent more distinct succession than did the bacterial communities. Proteobacteria dominated throughout the entire period, while, across different decomposition stages, the Ascomycete fungi were gradually replaced by the Ciliophora and Rozellomycota as the dominant fungi. Network analysis revealed higher degrees of species segregation and shorter average path lengths between species of fungi compared with species of bacteria. This suggests that fungal communities may harbor more niches and functional diversity and are potentially more susceptible to external interference than are bacterial communities. During decomposition, the contents of leaf cellulose, hemicellulose and lignin in the litter were significantly (p < 0.01) correlated with the fungal communities, and abiotic factors accounted for 89.8% of the total variation in the fungal communities. In contract, abiotic factors only explained 6.10% of the total variation in bacterial communities, suggesting external environments as drivers of fungal community succession. Overall, we provide evidence that the complex litter decay in wetlands is the result of a dynamic cross-kingdom succession, and this process is accompanied by distinct phyllospheric fungal community dynamics.


Subject(s)
Microbiota , Mycobiome , Bacteria/genetics , Ecosystem , Fungi , Plant Leaves , Soil Microbiology , Wetlands
20.
Small ; 16(6): e1905987, 2020 02.
Article in English | MEDLINE | ID: mdl-31917513

ABSTRACT

Mechanically interlocked molecules have marked a breakthrough in the field of topological chemistry and boosted the vigorous development of molecular machinery. As an archetypal example of the interlocked molecules, catenanes comprise macrocycles that are threaded through one another like links in a chain. Inspired by the transition metal-templated approach of catenanes synthesis, the hierarchical assembly of DNA origami catenanes templated by gold nanoparticles is demonstrated in this work. DNA origami catenanes, which contain two, three or four interlocked rings are successfully created. In particular, the origami rings within the individual catenanes can be set free with respect to one another by releasing the interconnecting gold nanoparticles. This work will set the basis for rich progress toward DNA-based molecular architectures with unique structural programmability and well-defined topology.


Subject(s)
Catenanes , DNA, Catenated , Gold , Metal Nanoparticles , Catenanes/chemistry , DNA/chemistry , DNA, Catenated/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...