Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3782, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710678

ABSTRACT

Thermoelectrics have great potential for use in waste heat recovery to improve energy utilization. Moreover, serving as a solid-state heat pump, they have found practical application in cooling electronic products. Nevertheless, the scarcity of commercial Bi2Te3 raw materials has impeded the sustainable and widespread application of thermoelectric technology. In this study, we developed a low-cost and earth-abundant PbS compound with impressive thermoelectric performance. The optimized n-type PbS material achieved a record-high room temperature ZT of 0.64 in this system. Additionally, the first thermoelectric cooling device based on n-type PbS was fabricated, which exhibits a remarkable cooling temperature difference of ~36.9 K at room temperature. Meanwhile, the power generation efficiency of a single-leg device employing our n-type PbS material reaches ~8%, showing significant potential in harvesting waste heat into valuable electrical power. This study demonstrates the feasibility of sustainable n-type PbS as a viable alternative to commercial Bi2Te3, thereby extending the application of thermoelectrics.

2.
Small ; : e2400866, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639306

ABSTRACT

The scarcity of Te hampers the widespread use of Bi2Te3-based thermoelectric modules. Here, the thermoelectric module potential of PbSe is investigated by improving its carrier mobility. Initially, large PbSe crystals are grown with the temperature gradient method to mitigate grain boundary effects on carrier transport. Subsequently, light doping with <1mole‰ halogens (Cl/Br/I) increases room-temperature carrier mobility to ~1600 cm2 V-1 s-1, achieved by reducing carrier concentration compared to traditional heavy doping. Crystal growth design and light doping enhance carrier mobility without affecting effective mass, resulting in a high power factor ~40 µW cm-1 K-2 in PbSe-Cl/Br/I crystals at 300 K. Additionally, Cl/Br/I doping reduces thermal conductivity and bipolar diffusion, leading to significantly lower thermal conductivity at high temperature. Enhanced carrier mobility and suppressed bipolar effect boost ZT values across the entire temperature range in n-type PbSe-Cl/Br/I crystals. Specifically, ZT values of PbSe-Br crystal reach ~0.6 at 300 K, ~1.2 at 773 K, and the average ZT (ZTave) reaches ~1.0 at 300-773 K. Ultimately, ~5.8% power generation efficiency in a PbSe single leg with a maximum temperature cooling difference of 40 K with 7-pair modules is achieved. These results indicate the potential for cost-effective and high-performance thermoelectric cooling modules based on PbSe.

3.
J Am Chem Soc ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922502

ABSTRACT

The room-temperature thermoelectric performance of materials underpins their thermoelectric cooling ability. Carrier mobility plays a significant role in the electronic transport property of materials, especially near room temperature, which can be optimized by proper composition control and growing crystals. Here, we grow Pb-compensated AgPb18+xSbTe20 crystals using a vertical Bridgman method. A large weighted mobility of ∼410 cm2 V-1 s-1 is achieved in the AgPb18.4SbTe20 crystal, which is almost 4 times higher than that of the polycrystalline counterpart due to the elimination of grain boundaries and Ag-rich dislocations verified by atom probe tomography, highlighting the significant benefit of growing crystals for low-temperature thermoelectrics. Due to the largely promoted weighted mobility, we achieve a high power factor of ∼37.8 µW cm-1 K-2 and a large figure of merit ZT of ∼0.6 in AgPb18.4SbTe20 crystal at 303 K. We further designed a 7-pair thermoelectric module using this n-type crystal and a commercial p-type (Bi, Sb)2Te3-based material. As a result, a high cooling temperature difference (ΔT) of ∼42.7 K and a power generation efficiency of ∼3.7% are achieved, revealing promising thermoelectric applications for PbTe-based materials near room temperature.

4.
Chem Mater ; 35(2): 755-763, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36711054

ABSTRACT

High carrier mobility is critical to improving thermoelectric performance over a broad temperature range. However, traditional doping inevitably deteriorates carrier mobility. Herein, we develop a strategy for fine tuning of defects to improve carrier mobility. To begin, n-type PbTe is created by compensating for the intrinsic Pb vacancy in bare PbTe. Excess Pb2+ reduces vacancy scattering, resulting in a high carrier mobility of ∼3400 cm2 V-1 s-1. Then, excess Ag is introduced to compensate for the remaining intrinsic Pb vacancies. We find that excess Ag exhibits a dynamic doping process with increasing temperatures, increasing both the carrier concentration and carrier mobility throughout a wide temperature range; specifically, an ultrahigh carrier mobility ∼7300 cm2 V-1 s-1 is obtained for Pb1.01Te + 0.002Ag at 300 K. Moreover, the dynamic doping-induced high carrier concentration suppresses the bipolar thermal conductivity at high temperatures. The final step is using iodine to optimize the carrier concentration to ∼1019 cm-3. Ultimately, a maximum ZT value of ∼1.5 and a large average ZT ave value of ∼1.0 at 300-773 K are obtained for Pb1.01Te0.998I0.002 + 0.002Ag. These findings demonstrate that fine tuning of defects with <0.5% impurities can remarkably enhance carrier mobility and improve thermoelectric performance.

5.
Nat Commun ; 13(1): 5937, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209153

ABSTRACT

Great progress has been achieved in p-type SnS thermoelectric compound recently, while the stagnation of the n-type counterpart hinders the construction of thermoelectric devices. Herein, n-type sulfide PbSnS2 with isostructural to SnS is obtained through Pb alloying and achieves a maximum ZT of ~1.2 and an average ZT of ~0.75 within 300-773 K, which originates from enhanced power factor and intrinsically ultralow thermal conductivity. Combining the optimized carrier concentration by Cl doping and enlarged Seebeck coefficient through activating multiple conduction bands evolutions with temperature, favorable power factors are maintained. Besides, the electron doping stabilizes the phase of PbSnS2 and the complex-crystal-structure induced strong anharmonicity results in ultralow lattice thermal conductivity. Moreover, a maximum power generation efficiency of ~2.7% can be acquired in a single-leg device. Our study develops a n-type sulfide PbSnS2 with high performance, which is a potential candidate to match the excellent p-type SnS.

6.
Nat Commun ; 13(1): 4603, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933407

ABSTRACT

Two-dimensional (2D) Dirac states with linear dispersion have been observed in graphene and on the surface of topological insulators. 2D Dirac states discovered so far are exclusively pinned at high-symmetry points of the Brillouin zone, for example, surface Dirac states at [Formula: see text] in topological insulators Bi2Se(Te)3 and Dirac cones at K and [Formula: see text] points in graphene. The low-energy dispersion of those Dirac states are isotropic due to the constraints of crystal symmetries. In this work, we report the observation of novel 2D Dirac states in antimony atomic layers with phosphorene structure. The Dirac states in the antimony films are located at generic momentum points. This unpinned nature enables versatile ways such as lattice strains to control the locations of the Dirac points in momentum space. In addition, dispersions around the unpinned Dirac points are highly anisotropic due to the reduced symmetry of generic momentum points. The exotic properties of unpinned Dirac states make antimony atomic layers a new type of 2D Dirac semimetals that are distinct from graphene.

7.
Nat Commun ; 13(1): 4179, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35853909

ABSTRACT

Thermoelectric generators enable the conversion of waste heat to electricity, which is an effective way to alleviate the global energy crisis. However, the inefficiency of thermoelectric materials is the main obstacle for realizing their widespread applications and thus developing materials with high thermoelectric performance is urgent. Here we show that multiple valence bands and strong phonon scattering can be realized simultaneously in p-type PbSe through the incorporation of AgInSe2. The multiple valleys enable large weighted mobility, indicating enhanced electrical properties. Abundant nano-scale precipitates and dislocations result in strong phonon scattering and thus ultralow lattice thermal conductivity. Consequently, we achieve an exceptional ZT of ~ 1.9 at 873 K in p-type PbSe. This work demonstrates that a combination of band manipulation and microstructure engineering can be realized by tuning the composition, which is expected to be a general strategy for improving the thermoelectric performance in bulk materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...