Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 131270, 2024 May.
Article in English | MEDLINE | ID: mdl-38556237

ABSTRACT

Enhanced kinetic stability of Fe-NPs in groundwater is a focus in application of Fe-NPs for groundwater remediation. The effect of surfactants (Triton X-100 and SDBS) and polymers (XG, SA, CCS, PSS and PVP) on the kinetic stability of Fe-NPs were studied with sedimentation experiments. Polymers improved stability of nFe3O4 and XG had the best effect, while surfactants had minimal effect. There was a critical concentration (CSC) for XG to stabilize nFe3O4, which was 2.0 g/L. At such a concentration nFe3O4, nFe2O3, and nCuO did not settled in 10 h, while the settlement occurred below the concentration and increased with decreasing XG concentration. At CSC XG could stabilize 20 g/L of nFe3O4 for >30 days and 8.0 g/L of nZVI for 13 days. Rheology studies indicated that the enhanced stability was due to the entanglement of XG molecules in the concentration range of 0.5-2.8 g/L and the formation of a uniform entangled network at CSC concentration was responsible for non-sedimentation of Fe-NPs. At hyper-CSC concentrations under the regime of concentrated network (>2.8 g/L), the stability of nFe3O4 and nFe2O3 decreased due to depletion interaction. The rules for XG to stabilize particles and information about the critical concentration will improve XG application in groundwater remediation using Fe-NPs.


Subject(s)
Iron , Polysaccharides, Bacterial , Rheology , Polysaccharides, Bacterial/chemistry , Kinetics , Iron/chemistry , Metal Nanoparticles/chemistry , Surface-Active Agents/chemistry
2.
Sci Total Environ ; 912: 169470, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38135086

ABSTRACT

While the cotransport of carbon nanoparticles (CNPs) and clay colloids in porous media has been widely studied, the influence of the cation exchange capacity (CEC) of clay colloids on the transport process remains unclear. In this study, batch adsorption and column transport experiments were conducted to investigate the fate and transport of CNPs and clay colloids in quartz sand, with respect to the effect of monovalent-cation exchange capacity (mono-CEC), divalent-cation exchange capacity (di-CEC) and total CEC of clays. Fullerene nanoparticles (nC60) and six types of montmorillonite (ML) with different CEC were selected as modeled CNPs and clay colloids, respectively. Transport behavior of nC60 and ML was characterized using breakthrough curves (BTCs) and fitted with two-kinetic-sites colloid transport model. Results of the adsorption experiments showed a good linear correlation between the deposition of nC60 on the sand surface and the di-CEC of ML. Transport of ML and nC60 was inhibited by each other. The calculated mass recovery of nC60, as well as the fitted maximum deposition capacity and attachment rate coefficients of nC60 exhibited a strong linear relationship with the di-CEC of ML. These results indicate that divalent cations in ML interlayers play a significant role in aggregation between nC60 and ML and their cotransport. Through measurements of the particle size and zeta potentials of sole nC60 and mixtures of ML and nC60, FTIR and XPS analysis of nC60 under different conditions, and a release experiment of nC60 in a sand column, it demonstrated cation bridging (Ca2+-π) between nC60 and ML mediated by the divalent cations in ML interlayers. The study highlighted the potential of using di-CEC of clays as an indicator to predict the mobility of nC60 in clay-containing porous media and added insights to the transport behavior of CNPs in porous media.

3.
Soft Matter ; 19(40): 7684-7690, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791910

ABSTRACT

The rheological behavior of a xanthan gum (XG) suspension with Fe-based nanoparticles (Fe-NPs), e.g., nanoparticles of zerovalent iron (nZVI) and Fe3O4 (nFe3O4), needs to be understood for better injection of Fe-NPs for groundwater remediation. In this study, the rheological behavior of a XG suspension of nZVI and nFe3O4 was investigated at different particle concentrations. The Ostwald, Sisko, Williamson, and Cross models were employed to fit the rheological behavior of the suspensions for quantitatively describing the effect of the particles. The results showed that the viscosity of the XG solutions decreased with increasing particle concentrations and they maintained shear thinning properties. The Cross model was the best among the four models to describe the shear thinning behavior of the XG solution in the presence of the particles. According to Cross model analysis, increasing particle concentrations increased the degree of shear thinning behavior, as indicated by the increase of the power index (n). Also, the relaxation time (λ) decreased with increasing particle concentrations, which indicated an increase of molecule movement of XG. Compared with nFe3O4, nZVI resulted in a larger decrease in viscosity and a larger increase in the degree of shear thinning behavior. There was a good linear relation between n and λ for the suspensions (R2 = 0.85), which indicated that increasing molecule movement of XG was an important mechanism for the particles to intensify the shear thinning rheological behavior of the XG suspension of Fe-NPs. This study added insight into the knowledge of the rheological properties of the XG suspension of Fe-NPs, which is of importance for the field injection effort.

4.
J Environ Sci (China) ; 115: 308-318, 2022 May.
Article in English | MEDLINE | ID: mdl-34969458

ABSTRACT

Antimony (Sb) is a recognized priority pollutant with toxicity that is influenced by its migration and transformation processes. Oxidation of Fe(II) to Fe(III) oxides, which is a common phenomenon in the environment, is often accompanied by the formation of Mn(III/IV) and might affect the fate of Sb. In this study, incorporated Mn(III) and sorbed/precipitated Mn(III/IV) associated with lepidocrocite were prepared by adding Mn(II) during and after Fe(II) oxidation, respectively, and the effects of these Mn species on Sb fate were investigated. Our results indicated that the association of these Mn species with lepidocrocite obviously enhanced Sb(III) oxidation to Sb(V), while concomitantly inhibiting Sb sorption due to the lower sorption capacity of lepidocrocite for Sb(V) than Sb(III). Additionally, Mn oxide equivalents increased in the presence of Sb, indicating that Sb oxidation by Mn(III/IV) associated with lepidocrocite was a continuous recycling process in which Mn(II) released from Mn(III/IV) reduction by Sb(III) could be oxidized to Mn(III/IV) again. This recycling process was favorable for effective Sb(III) oxidation. Moreover, Sb(V) generated from Sb(III) oxidation by Mn(III/IV) enhanced Mn(II) sorption at the beginning of the process, and thus favored Mn(III/IV) formation, which could further promote Sb(III) oxidation to Sb(V). Overall, this study elucidated the effects of Mn(III/IV) associated with lepidocrocite arisen from Fe(II) oxidation on Sb migration and transformation and revealed the underlying reaction mechanisms, contributing to a better understanding of the geochemical dynamics of Sb.


Subject(s)
Antimony , Ferric Compounds , Ferrous Compounds , Oxidation-Reduction , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...