Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 26(7): 222-234, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34340269

ABSTRACT

Introduction: The prediction of interacting drug-target pairs plays an essential role in the field of drug repurposing, and drug discovery. Although biotechnology and chemical technology have made extraordinary progress, the process of dose-response experiments and clinical trials is still extremely complex, laborious, and costly. As a result, a robust computer-aided model is of an urgent need to predict drug-target interactions (DTIs). Methods: In this paper, we report a novel computational approach combining fuzzy local ternary pattern (FLTP), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) to identify DTIs. More specially, the target primary sequence is first numerically characterized into PSSM which records the biological evolution information. Afterward, the FLTP method is applied in extracting the highly representative descriptors of PSSM, and the combinations of FLTP descriptors and drug molecular fingerprints are regarded as the complete features of drug-target pairs. Results: Finally, the entire features are fed into rotation forests for inferring potential DTIs. The experiments of 5-fold cross-validation (CV) achieve mean accuracies of 89.08%, 86.14%, 82.41%, and 78.40% on Enzyme, Ion Channel, GPCRs, and Nuclear Receptor datasets. Discussion: For further validating the model performance, we performed experiments with the state-of-art support vector machine (SVM) and light gradient boosting machine (LGBM). The experimental results indicate the superiorities of the proposed model in effectively and reliably detect potential DTIs. There is an anticipation that the proposed model can establish a feasible and convenient tool to identify high-throughput identification of DTIs.


Subject(s)
Pharmaceutical Preparations , Support Vector Machine , Computational Biology , Databases, Protein , Drug Interactions , Position-Specific Scoring Matrices
2.
Sci Rep ; 11(1): 16910, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413375

ABSTRACT

Various biochemical functions of organisms are performed by protein-protein interactions (PPIs). Therefore, recognition of protein-protein interactions is very important for understanding most life activities, such as DNA replication and transcription, protein synthesis and secretion, signal transduction and metabolism. Although high-throughput technology makes it possible to generate large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false positive rate. In order to formulate a more ingenious solution, biology community is looking for computational methods to quickly and efficiently discover massive protein interaction data. In this paper, we propose a computational method for predicting PPIs based on a fresh idea of combining orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein sequence information. Specifically, the protein sequence is first converted into position-specific scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate the process of solving key problems in proteomics.


Subject(s)
Evolution, Molecular , Protein Interaction Mapping , Databases, Protein , Humans , ROC Curve , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Support Vector Machine
3.
Biomed Res Int ; 2021: 9933873, 2021.
Article in English | MEDLINE | ID: mdl-33987446

ABSTRACT

Identifying the interactions of the drug-target is central to the cognate areas including drug discovery and drug reposition. Although the high-throughput biotechnologies have made tremendous progress, the indispensable clinical trials remain to be expensive, laborious, and intricate. Therefore, a convenient and reliable computer-aided method has become the focus on inferring drug-target interactions (DTIs). In this research, we propose a novel computational model integrating a pyramid histogram of oriented gradients (PHOG), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) classifier for identifying DTIs. Specifically, protein primary sequences are first converted into PSSMs to describe the potential biological evolution information. After that, PHOG is employed to mine the highly representative features of PSSM from multiple pyramid levels, and the complete describers of drug-target pairs are generated by combining the molecular substructure fingerprints and PHOG features. Finally, we feed the complete describers into the RF classifier for effective prediction. The experiments of 5-fold Cross-Validations (CV) yield mean accuracies of 88.96%, 86.37%, 82.88%, and 76.92% on four golden standard data sets (enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor, respectively). Moreover, the paper also conducts the state-of-art light gradient boosting machine (LGBM) and support vector machine (SVM) to further verify the performance of the proposed model. The experimental outcomes substantiate that the established model is feasible and reliable to predict DTIs. There is an excellent prospect that our model is capable of predicting DTIs as an efficient tool on a large scale.


Subject(s)
Amino Acid Sequence , Computational Biology/methods , Drug Discovery/methods , Drug Interactions , Machine Learning , Databases, Protein , Position-Specific Scoring Matrices , Support Vector Machine
4.
Evol Bioinform Online ; 16: 1176934320934498, 2020.
Article in English | MEDLINE | ID: mdl-32655275

ABSTRACT

Protein-protein interactions (PPIs) play a crucial role in the life cycles of living cells. Thus, it is important to understand the underlying mechanisms of PPIs. Although many high-throughput technologies have generated large amounts of PPI data in different organisms, the experiments for detecting PPIs are still costly and time-consuming. Therefore, novel computational methods are urgently needed for predicting PPIs. For this reason, developing a new computational method for predicting PPIs is drawing more and more attention. In this study, we proposed a novel computational method based on texture feature of protein sequence for predicting PPIs. Especially, the Gabor feature is used to extract texture feature and protein evolutionary information from Position-Specific Scoring Matrix, which is generated by Position-Specific Iterated Basic Local Alignment Search Tool. Then, random forest-based classifiers are used to infer the protein interactions. When performed on PPI data sets of yeast, human, and Helicobacter pylori, we obtained good results with average accuracies of 92.10%, 97.03%, and 86.45%, respectively. To better evaluate the proposed method, we compared Gabor feature, Discrete Cosine Transform, and Local Phase Quantization. Our results show that the proposed method is both feasible and stable and the Gabor feature descriptor is reliable in extracting protein sequence information. Furthermore, additional experiments have been conducted to predict PPIs of other 4 species data sets. The promising results indicate that our proposed method is both powerful and robust.

SELECTION OF CITATIONS
SEARCH DETAIL
...