Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475578

ABSTRACT

The shoot apical meristem culture has been used widely to produce virus-free plantlets which have the advantages of strong disease resistance, high yield, and prosperous growth potential. However, this virus-free plant will be naturally reinfected in the field. The physiological and metabolic responses in the reinfected plant are still unknown. The flower of chrysanthemum 'Hangju' is a traditional medicine which is unique to China. In this study, we found that the virus-free 'Hangju' (VFH) was reinfected with chrysanthemum virus B/R in the field. However, the reinfected VFH (RVFH) exhibited an increased yield and medicinal components compared with virus-infected 'Hangju' (VIH). Comparative analysis of transcriptomes was performed to explore the molecular response mechanisms of the RVFH to CVB infection. A total of 6223 differentially expressed genes (DEGs) were identified in the RVFH vs. the VIH. KEGG enrichment and physiological analyses indicated that treatment with the virus-free technology significantly mitigated the plants' lipid and galactose metabolic stress responses in the RVFH. Furthermore, GO enrichment showed that plant viral diseases affected salicylic acid (SA)-related processes in the RVFH. Specifically, we found that phenylalanine ammonia-lyase (PAL) genes played a major role in defense-related SA biosynthesis in 'Hangju'. These findings provided new insights into the molecular mechanisms underlying plant virus-host interactions and have implications for developing strategies to improve plant resistance against viruses.

2.
Metabolites ; 12(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36557254

ABSTRACT

Freezing damage is a common phenomenon responsible for reduced yields of economic crops. Regulation of lipid metabolism plays an important role in plant growth and adaptation during freezing. We previously carried out transcriptome and untargeted metabolome analyses to determine the regulation of flavonol and anthocyanin biosynthesis during freezing treatment (FT) and post-freezing recovery (FR) in Dendrobium catenatum. However, changes in lipid levels are hard to confirm by untargeted metabolomics analysis alone. Regulation of lipid metabolism in response to freezing is largely unknown in Dendrobium. In this study, a multi-omics strategy was used to offer a better means of studying metabolic flow during FT and FR. To this end, 6976 proteins were identified by the 4D_label-free proteome, including 5343 quantified proteins. For each of the two conditions, we enriched differentially accumulated proteins (DAPs) into 15 gene ontology (GO) terms, including primary metabolism, lipid metabolism, and photosynthesis processes. We also identified 7 lipid categories and 3672 lipid species using lipidome assays. We found significant remodeling occurring in the phospholipid category during FT and FR. We also found that most sphingolipids were significantly upregulated. An integrated multi-omics analysis revealed significant changes in the expression levels of 141 mRNAs and encoding proteins under both FT and FR conditions. During FT, phospholipase A (PLA) and phospholipase D (PLD) were associated with phospholipid editing and galactolipid remodeling. These results provide valuable new insights into how the freezing tolerance of D. catenatum might be improved by genetic engineering.

3.
Life (Basel) ; 12(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36294998

ABSTRACT

Dendrobium catenatum is an important herb and widely cultivated in China. GDSL-Type Esterase/Lipase proteins (GELPs) are widely distributed in plants and play crucial roles in stress responses, plant growth, and development. However, no identification or functional analysis of GELPs was reported in D. catenatum. This study identifies 52 GELPs in D. catenatum genome, which is classified into four groups by phylogenetic analysis. Four conservative blocks (Ser-Gly-Asn-His) are found in most GELP domains. Transcriptome analysis reveals the expression profiles of GELPs in different organs and flowering phases. Co-expression analysis of the transcriptome and lipidome identifies a GELP gene, Dca016600, that positively correlates with 23 lipids. The purified Dca016600 protein shows the optimum pH is active from 8.0 to 8.5, and the optimum temperature is active from 30 °C to 40 °C. The kinetic study provides Vmax (233.43 µmol·min-1·mg-1) and Km (1.49 mM) for substrate p-nitrophenyl palmitate (p-NPP). Integrated analysis of the transcriptome and proteome identifies a GELP gene, Dca005399, which is specially induced by freezing. Interestingly, Dca005399 shows high expression in symbiotic germination seeds and sepals. This study provides new insights into the function of D. catenatum GELPs in plant development and stress tolerance.

4.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742843

ABSTRACT

Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the 'terpenoid backbone biosynthesis' pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium.


Subject(s)
Alkyl and Aryl Transferases , Dendrobium , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Dendrobium/genetics , Dendrobium/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Terpenes/metabolism
5.
Plants (Basel) ; 10(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199229

ABSTRACT

Dendrobium catenatum, a valuable Chinese herb, frequently experiences abiotic stresses, such as cold and drought, under natural conditions. Nonphosphorus glycerolipid synthase (NGLS) genes are closely linked to the homeostasis of membrane lipids under abiotic stress in plants. However, there is limited information on NGLS genes in D. catenatum. In this study, a total of eight DcaNGLS genes were identified from the D. catenatum genome; these included three monogalactosyldiacylglycerol synthase (DcaMGD1, 2, 3) genes, two digalactosyldiacylglycerol synthase (DcaDGD1, 2) genes, and three sulfoquinovosyldiacylglycerol synthase (DcaSQD1, 2.1, 2.2) genes. The gene structures and conserved motifs in the DcaNGLSs showed a high conservation during their evolution. Gene expression profiling showed that the DcaNGLSs were highly expressed in specific tissues and during rapid growth stages. Furthermore, most DcaNGLSs were strongly induced by freezing and post-freezing recovery. DcaMGD1 and DcaSQDs were greatly induced by salt stress in leaves, while DcaDGDs were primarily induced by salt stress in roots. Under drought stress, most DcaNGLSs were regulated by circadian rhythms, and DcaSQD2 was closely associated with drought recovery. Transcriptome analysis also revealed that MYB might be regulated by circadian rhythm and co-expressed with DcaNGLSs under drought stress. These results provide insight for the further functional investigation of NGLS and the regulation of nonphosphorus glycerolipid biosynthesis in Dendrobium.

6.
Plant Physiol Biochem ; 166: 477-484, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34166974

ABSTRACT

Sinocalycanthus chinensis, a diploid (2n = 22) deciduous shrub, belongs to the Calycanthaceae family of magnoliids and is rich secondary metabolites, such as terpenoids. However, the regulation of terpenoid biosynthesis in S. chinensis is largely unknown. In this study, comparative transcriptome analyses were performed in the bark, branches, leaves, and flowers. KEGG enrichment analysis revealed that the terpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in the four tissues. Twelve terpenoid backbone biosynthesis-related genes were identified, and eight terpene synthases (TPSs) were reassembled based on independent transcriptomes from the four tissues. Phylogenetic analysis of the TPSs showed high sequence similarity between S. chinensis and Arabidopsis, and these TPSs were classified into three subfamilies. Moreover, 39 phytohormone response-related genes, including 5 abscisic acid (ABA) receptors, 25 auxin response factors, 3 gibberellin (GA) response genes, 5 ethylene response genes, and 1 jasmonic acid (JA) response gene were analyzed. Most phytohormone pathway-related genes were upregulated in the flowers and downregulated in the leaves. The endogenous indole acetic acid (IAA) content was higher in the flowers than in the other comparisons. Our results provide an opportunity to reveal the regulation of terpenoid biosynthesis in S. chinensis.


Subject(s)
Calycanthaceae , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Terpenes , Transcriptome/genetics
7.
Sci Rep ; 10(1): 17700, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077850

ABSTRACT

We performed an integrated analysis of the transcriptome and metabolome from purple (Pr) and normal cultivated varieties (CK) of Dendrobium officinale to gain insights into the regulatory networks associated with phenylpropanoid metabolism and to identify the key regulatory genes of pigmentation. Metabolite and transcript profiling were conducted by ultra-performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) and RNA sequencing. Pr had more flavonoids in the stem than did CK. Metabolome analyses showed that 148 differential metabolites are involved in the biosynthesis of phenylpropanoids, amino acids, purines, and organic acids. Among them, the delphinidin and quercetin derivatives were significantly higher in Pr. A total of 4927 differentially expressed genes (DEGs) were significantly enriched (p ≤ 0.01) in 50 Gene Ontology (GO) terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significantly enriched phenylpropanoid biosynthesis and phytohormone signal transduction in Pr versus CK. The expression levels of flavanone 3-hydroxylase (F3H) and leucoanthocyanidin dioxygenase (LDOX) affected the flux of dihydroflavonol, which led to a color change in Pr. Moreover, DEG enrichment and metabolite analyses reflected flavonoid accumulation in Pr related to brassinosteroid (BR) and auxin metabolism. The results of this study elucidate phenylpropanoid biosynthesis in D. officinale.


Subject(s)
Dendrobium/genetics , Gene Expression Profiling , Metabolomics , Phenylpropionates/metabolism , Pigmentation , Dendrobium/metabolism , Genes, Plant
8.
Front Microbiol ; 11: 406, 2020.
Article in English | MEDLINE | ID: mdl-32265866

ABSTRACT

Streptomyces is taken as an important resource for producing the most abundant antibiotics and other bio-active natural products, which have been widely used in pharmaceutical and agricultural areas. Usually they are biosynthesized through secondary metabolic pathways encoded by cluster situated genes. And these gene clusters are stringently regulated by interweaved transcriptional regulatory cascades. In the past decades, great advances have been made to elucidate the regulatory mechanisms involved in antibiotic production in Streptomyces. In this review, we summarized the recent advances on the regulatory cascades of antibiotic production in Streptomyces from the following four levels: the signals triggering the biosynthesis, the global regulators, the pathway-specific regulators and the feedback regulation. The production of antibiotic can be largely enhanced by rewiring the regulatory networks, such as overexpression of positive regulators, inactivation of repressors, fine-tuning of the feedback and ribosomal engineering in Streptomyces. The enormous amount of genomic sequencing data implies that the Streptomyces has potential to produce much more antibiotics for the great diversities and wide distributions of biosynthetic gene clusters in Streptomyces genomes. Most of these gene clusters are defined cryptic for unknown or undetectable natural products. In the synthetic biology era, activation of the cryptic gene clusters has been successfully achieved by manipulation of the regulatory genes. Chemical elicitors, rewiring regulatory gene and ribosomal engineering have been employed to crack the potential of cryptic gene clusters. These have been proposed as the most promising strategy to discover new antibiotics. For the complex of regulatory network in Streptomyces, we proposed that the discovery of new antibiotics and the optimization of industrial strains would be greatly promoted by further understanding the regulatory mechanism of antibiotic production.

9.
World J Microbiol Biotechnol ; 36(1): 13, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31897764

ABSTRACT

Streptomyces is famous for its capability to produce the most abundant antibiotics in all kingdoms. All Streptomyces antibiotics are natural products, whose biosynthesis from the so-called gene clusters are elaborately regulated by pyramidal transcriptional regulatory cascades. In the past decades, scientists have striven to unveil the regulatory mechanisms involved in antibiotic production in Streptomyces. Here we mainly focus on three aspects of the regulation on antibiotic production. 1. The onset of antibiotic production triggered by hormones and their coupled receptors as regulators; 2. The cascades of global and pathway-specific regulators governing antibiotic production; 3. The feedback regulation of antibiotics and/or intermediates on the gene cluster expression for their coordinated production. This review will summarize how the antibiotic production is stringently regulated in Streptomyces based on the signaling, and lay a theoretical foundation for improvement of antibiotic production and potentially drug discovery.


Subject(s)
Anti-Bacterial Agents/metabolism , Gene Regulatory Networks , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hormones/metabolism , Multigene Family , Streptomyces/genetics
10.
Front Microbiol ; 11: 614274, 2020.
Article in English | MEDLINE | ID: mdl-33613466

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2020.00406.].

11.
Plant Cell ; 31(12): 3073-3091, 2019 12.
Article in English | MEDLINE | ID: mdl-31575723

ABSTRACT

Cyclic GMP (cGMP) is an important regulator in eukaryotes, and cGMP-dependent protein kinase (PKG) plays a key role in perceiving cellular cGMP in diverse physiological processes in animals. However, the molecular identity, property, and function of PKG in plants remain elusive. In this study, we have identified PKG from plants and characterized its role in mediating the gibberellin (GA) response in rice (Oryza sativa). PKGs from plants are structurally unique with an additional type 2C protein phosphatase domain. Rice PKG possesses both protein kinase and phosphatase activities, and cGMP stimulates its kinase activity but inhibits its phosphatase activity. One of PKG's targets is GAMYB, a transcription factor in GA signaling, and the dual activities of PKG catalyze the reversible phosphorylation of GAMYB at Ser6 and modulate the nucleocytoplasmic distribution of GAMYB in response to GA. Loss of PKG impeded the nuclear localization of GAMYB and abolished GAMYB function in the GA response, leading to defects in GA-induced seed germination, internode elongation, and pollen viability. In addition to GAMYB, PKG has multiple potential targets and thus has broad effects, particularly in the salt stress response.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Gibberellins/metabolism , Oryza/metabolism , Salt Stress/genetics , Transcription Factors/metabolism , Cell Nucleus/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Germination/drug effects , Gibberellins/pharmacology , Mutation , Oryza/drug effects , Oryza/enzymology , Oryza/genetics , Phosphorylation/drug effects , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Promoter Regions, Genetic , Seeds/genetics , Seeds/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics
12.
Plant Cell Environ ; 42(7): 2215-2230, 2019 07.
Article in English | MEDLINE | ID: mdl-30942482

ABSTRACT

Sulfoquinovosyltransferase 2 (SQD2) catalyses the final step in the sulfoquinovosyldiacylglycerol (SQDG) biosynthetic pathway. It is involved in the phosphate starvation response. Here, we show that rice SQD2.1 has dual activities catalysing SQDG synthesis and flavonoid glycosylation. SQD2.1 null mutants (sqd2.1) in rice had decreased levels of glycosidic flavonoids, particularly apigenin 7-O-glucoside (A7G), whereas these metabolites were increased in rice plants overexpressing SQD2.1. The sqd2.1 mutants and SQD2.1 overexpressing lines showed reduced and enhanced, respectively, tolerance to salinity and drought. Treating the sqd2.1 mutants with A7G decreased oxidative damage and restored stress tolerance to the wild-type levels. These findings demonstrate that SQD2.1 has a novel function in the glycosylation of flavonoids that is required for osmotic stress tolerance in rice. The novel activity of SQD2.1 in the production of glycosidic flavonoids improves scavenging of reactive oxygen species and protects against excessive oxidation.


Subject(s)
Flavonoids/metabolism , Hexosyltransferases/metabolism , Oryza/enzymology , Oryza/metabolism , Osmotic Pressure/physiology , Apigenin/metabolism , Arabidopsis Proteins , Droughts , Gene Expression Regulation, Plant , Glycosylation , Hexosyltransferases/genetics , Malondialdehyde/metabolism , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Proline/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance , Stress, Physiological , Transcriptome
13.
Sci Rep ; 7(1): 4685, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680100

ABSTRACT

Seed setting is an important trait that contributes to seed yield and relies greatly on starch accumulation. In this study, a sulfoquinovosyl transferase-like protein, designated as SQD2.2 involved in seed setting and flavonoid accumulation, was identified and characterized in rice. Rice SQD2.2 is localized to the cytoplasm, and the SQD2.2 transcript was highest in leaves. Rice SQD2.2-overexpressing (OE) plants exhibited a decreased seed setting rate and diminished tiller number simultaneously with an increased glycosidic flavonoid level compared with wild-type (WT) plants. SQD2.2 catalyzes the glycosylation of apigenin to produce apigenin 7-O-glucoside using uridine diphosphate-glucose (UDPG) as a sugar donor, but it failed to compensate for sulfoquinovosyldiacylglycerol (SQDG) synthesis in the Arabidopsis sqd2 mutant. Furthermore, apigenin 7-O-glucoside inhibited starch synthase (SS) activity in a concentration-dependent manner, and SQD2.2-OE plants exhibited reduced SS activity accompanied by a significant reduction in starch levels and an elevation in soluble sugar levels relative to WT plants. Both adenosine diphosphate-glucose (ADPG) and UDPG levels in SQD2.2-OE plants were notably lower than those in WT plants. Taken together, rice SQD2.2 exhibits a novel role in flavonoid synthesis and plays an important role in mediating sugar allocation between primary and secondary metabolism in rice.


Subject(s)
Apigenin/metabolism , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Oryza/enzymology , Cloning, Molecular , Cytoplasm/metabolism , Gene Expression Regulation, Plant , Glycosylation , Oryza/genetics , Oryza/growth & development , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Secondary Metabolism , Seeds/enzymology , Seeds/genetics , Seeds/growth & development , Uridine Diphosphate Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...