Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(19): 21936-21943, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32319747

ABSTRACT

Inorganic photochromic material is an available medium to obtain optical information storage. The photochromic property of the inorganic material is mainly from the defects of the host. However, the formation of defects in the host is uncontrollable, in particular, the revisable formation and removement of defects are difficult. Thus, there are few inorganic materials with the revisable photochromism upon the entire light stimulation. Therefore, it is an urgent need to find a suitable approach to design inorganic photochromic materials. Here, the photochromic PbWO4:Yb3+, Er3+ ceramic was designed with the help of valence state change of W6+ → W5+ and Pb2+ → Pb4+. Upon the 532 nm laser stimulation, the photochromism of the PbWO4:Yb3+, Er3+ ceramic was obtained based on the Pb2+ + hν (532 nm) → Pb4+ + 2e- and W6+ + e- + hν (532 nm) → W5+ reaction, resulting in the optical information writing. Under the stimulation of an 808 nm laser, the written optical information was erased based on the W5+ + hν (808 nm) → W6+ + e- and Pb4+ + 2e- + hν (808 nm) → Pb2+ reaction. In addition, the photochromism-induced upconversion emission modification was obtained in the PbWO4:Yb3+, Er3+ ceramic, realizing the effective and nondestructive reading out of optical information. The cyclic experiment demonstrated a good reproducibility of both photochromism and upconversion emission modification, exhibiting the potential application of the PbWO4:Yb3+, Er3+ ceramic as the optical data storage medium.

2.
PLoS One ; 10(5): e0127736, 2015.
Article in English | MEDLINE | ID: mdl-25997173

ABSTRACT

To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.


Subject(s)
Environmental Pollution , Metals, Heavy/chemistry , Soil Pollutants/chemistry , Soil/chemistry , China , Environmental Monitoring , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...