Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Natl Sci Rev ; 11(6): nwae050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707205

ABSTRACT

High intraocular pressure (IOP) is one of the high-risk pathogenic factors of glaucoma. Existing methods of IOP measurement are based on the direct interaction with the cornea. Commercial ophthalmic tonometers based on snapshot measurements are expensive, bulky, and their operation requires trained personnel. Theranostic contact lenses are easy to use, but they may block vision and cause infection. Here, we report a sensory system for IOP assessment that uses a soft indentor with two asymmetrically deployed iontronic flexible pressure sensors to interact with the eyelid-eyeball in an eye-closed situation. Inspired by human fingertip assessment of softness, the sensory system extracts displacement-pressure information for soft evaluation, achieving high accuracy IOP monitoring (>96%). We further design and custom-make a portable and wearable ophthalmic tonometer based on the sensory system and demonstrate its high efficacy in IOP screening. This sensory system paves a way towards cost-effective, robust, and reliable IOP monitoring.

2.
Metabolites ; 13(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37999214

ABSTRACT

Pneumonia is a common clinical disease in the neonatal period and poses a serious risk to infant health. Therefore, the understanding of molecular mechanisms is of great importance for the development of methods for the rapid and accurate identification, classification and staging, and even disease diagnosis and therapy of pneumonia. In this study, a nontargeted metabonomic method was developed and applied for the analysis of serum samples collected from 20 cases in the pneumonia control group (PN) and 20 and 10 cases of pneumonia patients with metabolic acidosis (MA) and myocardial damage (MD), respectively, with the help of ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). The results showed that compared with the pneumonia group, 23 and 21 differential metabolites were identified in pneumonia with two complications. They showed high sensitivity and specificity, with the area under the curve (ROC) of the receiver operating characteristic curve (ROC) larger than 0.7 for each differential molecule. There were 14 metabolites and three metabolic pathways of sphingolipid metabolism, porphyrin and chlorophyll metabolism, and glycerophospholipid metabolism existing in both groups of PN and MA, and PN and MD, all involving significant changes in pathways closely related to amino acid metabolism disorders, abnormal cell apoptosis, and inflammatory responses. These findings of molecular mechanisms should help a lot to fully understand and even treat the complications of pneumonia in infants.

3.
Carbohydr Polym ; 321: 121265, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739494

ABSTRACT

A Fe-pillared montmorillonite (Fe-MMT) functionalized bio-based foam (Fe-MMT@CS/G) was developed by using chitosan (CS) and gelatin (G) as the matrix for high-efficiency elimination of organic pollutants through the integration of adsorption and Fenton degradation. The results showed that the mechanical properties of as-obtained foam were strengthened by the addition of certain amounts of Fe-MMT. Interestingly, Fe-MMT@CS/G displayed efficient adsorption ability for charged pollutants under a wide range of pH. The adsorption processes of methyl blue (MB), methylene blue (MEB) and tetracycline hydrochloride (TCH) on Fe-MMT@CS/G were well described by the Freundlich isotherm model and pseudo-second-order kinetic model. The maximum adsorption capacities were 2208.24 mg/g for MB, 1167.52 mg/g for MEB, and 806.31 mg/g for TCH. Electrostatic interactions, hydrogen bonding and van der Waals forces probably involved the adsorption process. As expected, this foam could exhibit better removal properties toward both charged and uncharged organic pollutants through the addition of H2O2 to trigger the Fenton degradation reaction. For non-adsorbable and uncharged bisphenol A (BPA), the removal efficiency was dramatically increased from 1.20 % to 92.77 % after Fenton degradation. Additionally, it presented outstanding recyclability. These results suggest that Fe-MMT@CS/G foam is a sustainable and efficient green material for the alleviation of water pollution.

4.
Chem Sci ; 14(30): 8109-8118, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37538824

ABSTRACT

The chemical up-cycling of polymers into value-added materials offers a unique opportunity to place plastic waste in a new value chain towards a circular economy. Herein, we report the selective up-cycling of polystyrenes and polyolefins to C(sp3)-H azidated materials under electrocatalytic conditions. The functionalized polymers were obtained with high retention of mass average molecular mass and high functionalization through chemo-selective mangana-electrocatalysis. Our strategy proved to be broadly applicable to a variety of homo- and copolymers. Polyethylene, polypropylene as well as post-consumer polystyrene materials were functionalized by this approach, thereby avoiding the use of hypervalent-iodine reagents in stoichiometric quantities by means of electrocatalysis. This study, hence, represents a chemical oxidant-free polymer functionalization by electro-oxidation. The electrocatalysis proved to be scalable, which highlights its unique feature for a green hydrogen economy by means of the hydrogen evolution reaction (HER).

5.
Article in English | MEDLINE | ID: mdl-37019038

ABSTRACT

Natural flavors and fragrances or their extracts have been widely used in a large variety of areas, including food, cosmetic, and tobacco industrial processes, among others. The compositions and intrinsic attributes of flavors and fragrances were related to many factors, such as species, geographical origin, planting environment, storage condition, processing method, and so on. This not only increased the difficulty in analyzing the product quality of flavors and fragrances, but also challenged the idea of "quality-by-design (QbD)". This work proposed an integrated strategy for precise discovery of differential compounds among different classes and subsequent quality analysis of complex samples through flavors and fragrances used in tobacco industry as examples. Three pretreatment methods were first inspected to effectively characterize the sample compositions, including direct injection (DI), thermal desorption (TD), and stir bar sorptive extraction (SBSE)-TD, coupled with gas chromatography-mass spectrometry (GC-MS) analysis to obtain characteristic information of samples of flavors and fragrances. Then, principal component analysis (PCA) was applied to discover the relation and difference between chromatographic fingerprints and peak table data once significant components were recognized in a holistic manner. Model population analysis (MPA) was then used to quantitatively extract the characteristic chemicals representing the quality differences among different classes of samples. Some differential marker compounds were discovered for difference analysis, including benzyl alcohol, latin acid, l-menthol acid, decanoic acid ethyl ester, vanillin, trans-o-coumaric acid, benzyl benzoate, and so on. Furthermore, partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) were respectively applied to construct multivariate models for evaluation of quality differences and variations. It was found that the accuracy attains to 100% for sample classification. With the help of optimal sample pretreatment technique and chemometric methods, the strategy for quality analysis and difference discovery proposed in this work can be widely delivered to more areas of complex plants with good interpretability and high accuracy.


Subject(s)
Chemometrics , Odorants , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods
6.
Sci Adv ; 9(9): eadf8831, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36867698

ABSTRACT

Iontronic pressure sensors are promising in robot haptics because they can achieve high sensing performance using nanoscale electric double layers (EDLs) for capacitive signal output. However, it is challenging to achieve both high sensitivity and high mechanical stability in these devices. Iontronic sensors need microstructures that offer subtly changeable EDL interfaces to boost sensitivity, while the microstructured interfaces are mechanically weak. Here, we embed isolated microstructured ionic gel (IMIG) in a hole array (28 × 28) of elastomeric matrix and cross-link the IMIGs laterally to achieve enhanced interfacial robustness without sacrificing sensitivity. The embedded configuration toughens and strengthens the skin by pinning cracks and by the elastic dissipation of the interhole structures. Furthermore, cross-talk between the sensing elements is suppressed by isolating the ionic materials and by designing a circuit with a compensation algorithm. We have demonstrated that the skin is potentially useful for robotic manipulation tasks and object recognition.

7.
Nat Prod Res ; 37(22): 3884-3888, 2023.
Article in English | MEDLINE | ID: mdl-36503283

ABSTRACT

Five extracts of the aerial parts of Aconitum carmichaeli were obtained by different solvent extraction or macroporous adsorption resin purification: ethyl acetate layer extract (EAE), n-butanol layer extract (BuE), water layer extract (WE), extract eluted by 10% ethanol from macroporous resin (10%EE), extract eluted by 80% ethanol from macroporous resin (80%EE). Antioxidant activities of the five extracts were determined by ABTS, DPPH, FRAP assays, anti-AChE activities by modified Ellman's method, in vitro anti-hepatoma activities by CCK-8 assay, and chemical constituents of 80%EE were identified by UPLC-QE-Orbitrap-MS. The results demonstrated that the 80%EE showed the best in vitro anti-hepatoma activity on Huh-7 cell line with an IC50 of 103.91 ± 11.02 µg/mL. 10%EE and 80%EE gave the highest antioxidant activity. Furthermore, current findings demonstrated that the aerial part of Aconitum carmichaeli Debx. has high medicinal value and may be a good natural medicine.

8.
Comput Biol Med ; 143: 105291, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35180498

ABSTRACT

The Legionellaceae group comprises the Legionella, containing 58 species with 70 serotypes. For instance, Legionella pneumophila is the deadliest serotype to cause Legionnaires infectious and is responsible for 90% of the infections in humans. The bacterial pathogen is associated with a severe lung infection, known as legionaries' disease. It is resistant to multiple drugs, thus warranting novel vaccine candidates identification to immune the host against infections caused by the said pathogen. For this, we applied the subtractive proteomics and reverse vaccinology approaches to annotate the most essential genes suitable for vaccine designing. From the whole proteome, only five proteins (Q5ZVG4, Q5ZRZ1, Q5ZWE6, Q5ZT09, and Q5ZUZ8) as the best targets for further processing as they fulfill all the standard parameters set for in silico vaccine design. Immuno-informatics approaches were further applied to the selected protein sequences to prioritized antigenic epitopes for design a multi-epitope subunit vaccine. A multi-epitopes vaccine was designed by using suitable linkers to link the CTL (cytotoxic T lymphocytes), HTL (Helper T lymphocytes), B cell epitopes, and adjuvant to strengthen the vaccine's immunogenicity. The MEVC(multi-epitopes vaccine construct) was reported to interact with human immune receptor TLR-2 (toll-like receptor) robustly (docking score = -357.18 kcal/mol), and a higher expression was achieved in the Escherichia coli system (CAI = 0.88, and GC contents = 54.34%). Moreover, immune simulation revealed that on the 3rd day, the neutralization of the antigen started, while on the 5th day, the antigen was completely neutralized by the secreted immune factors. In conclusion, the designed vaccine candidate effectively triggered the immune response against eh pathogen; however, wet lab-based experimentations are highly recommended to prove the protective immunological proficiency of the vaccine against L. pneumophila.

9.
Carbohydr Polym ; 260: 117760, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33712122

ABSTRACT

A transparent versatile cellulose platform film was prepared from Eucalyptus pulp in this work. Based on such cellulose platform, multifunctional cellulose films with ultraviolet-shielding, photochromism, and strong mechanical strength were fabricated via nucleophilic postmodification strategy by introducing a versatile spiropyran moiety into cellulose molecules. The fabricated cellulose films exhibited super-high transmittance up to 96% and performed notable ultraviolet-shielding capacity at 200-400 nm. Moreover, the photochromic performance of cellulose films with color changes could be clearly observed by the naked eyes, and the fluorescent blue could be excited. Besides, the tensile stress of multi-functional cellulose film was about 80 MPa, which was almost 8 times stronger than that of the commercial polyethylene film at the same thickness. It is noteworthy that these superior performances promote such a cellulose platform to be a versatile precursor for fabricating various multi-functional cellulose used in the fields of out-door coating, transparent packaging, optical screen,etc.


Subject(s)
Cellulose/chemistry , Benzopyrans/chemistry , Eucalyptus/metabolism , Indoles/chemistry , Nanocomposites/chemistry , Nitro Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Sunscreening Agents/chemistry , Surface Properties , Tensile Strength , Ultraviolet Rays
10.
ACS Appl Mater Interfaces ; 13(2): 2694-2709, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33400496

ABSTRACT

A novel CO2-responsive cotton as an eco-friendly adsorbent derived from poly(4-acryloyloxybenzophenone-co-2-(dimethylamino) ethyl methacrylate) and cotton was fabricated via a facile and fast dip-coating method. As expected, upon CO2 stimulation, the protonated cotton presented CO2-induced "on-off" selective adsorption behaviors toward anionic dyes owing to electrostatic interactions. The adsorption isotherms and kinetics of the CO2-responsive cotton toward anionic dyes obeyed the Langmuir isotherm and pseudo-second-order kinetics models, respectively. It is noteworthy that the CO2-responsive cotton exhibited high adsorption capacity and ultrafast adsorption rate toward anionic dyes with the maximum adsorption capacities of 1785.71 mg g-1 for methyl orange (MO), 1108.65 mg g-1 for methyl blue (MB), and 1315.79 mg g-1 for naphthol green B (NGB), following the adsorption equilibrium times of 5 min for MO, 3 min for MB, and 4 min for NGB. Moreover, the CO2-responsive cotton also exhibited high removal efficiency toward anionic dyes in synthetic dye effluent. Additionally, the CO2-responsive cotton could be facilely regenerated via heat treatment under mild conditions and presented stable adsorption properties even after 15 cycles. Finally, the as-prepared CO2-responsive cotton exhibited outstanding antibacterial activity against E. coli and S. aureus. In summary, this novel CO2-responsive cotton can be viewed as a promising eco-friendly adsorbent material for potential scalable application in dye-contaminated wastewater remediation.

11.
J Hazard Mater ; 405: 124194, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33097347

ABSTRACT

A novel CO2-responsive cellulose nanofibril aerogel as a "green" adsorbent derived from poly(methacrylic acid-co-2-(dimethylamino) ethyl methacrylate) and carboxylated cellulose nanofibrils was successfully prepared via stepwise cation-induced gelation and freeze drying method. This aerogel exhibited CO2-triggered adsorption behavior towards anionic dyes with a rapid adsorption rate and a high adsorption capacity, as well as satisfactory mechanical properties. Upon CO2 stimulation, the charged aerogel can selectively adsorb anionic dyes from aqueous solutions based on an electrostatic interaction. The maximum adsorption capacities of this aerogel towards methyl blue (MB), naphthol green B (NGB), and methyl orange (MO) were 598.8, 621.1 and 892.9 mg g-1, respectively, accompanied by fast adsorption equilibriums towards MB and NGB within 7 min, and MO within 12 min. Meanwhile, the adsorption isotherms and the kinetics of the CO2-responsive adsorbents followed the Freundlich isotherm and the pseudo-second-order model, respectively. Furthermore, the resulting CO2-responsive adsorbent exhibited outstanding recyclability, as its adsorption performance can still be maintained even after twenty cycles. Accordingly, the resultant CO2-responsive cellulose nanofibril aerogel could be a promising adsorbent material for the removal of anionic dyes in wastewater remediation.

12.
J Colloid Interface Sci ; 582(Pt B): 488-495, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32911397

ABSTRACT

Currently, designing novel noble-metal-free photocatalysts with efficient carriers migration and catalytically active sites have been a researching hotspot in photocatalytic hydrogen evolution. In this paper, a novel noble-metal-free Mo2C-In2S3 heterojunction was synthesized by a simple hydrothermal method. Morphology characterization revealed In2S3 was attached to Mo2C. Electrochemical results showed Mo2C improved the interface conductivity, and promoted the transportation of photogenerated carriers. Under visible light, the optimal Mo2C-In2S3 composite achieved a H2 generation rate of 535.58 µmol h-1 g-1, which was 175.6 and 25.8 times higher than pristine In2S3 (3.05 µmol h-1 g-1) and In2S3-1% Pt (20.73 µmol h-1 g-1). In addition, a reasonable mechanism of the elevated photocatalytic activity was also discussed. This study demonstrates commercial Mo2C has an important effect of separating carriers and replacing Pt as co-catalyst in heterojunctions. This research also provides a method to design and synthesize new noble-metal-free photocatalysts for excellent hydrogen production activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...