Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316281

ABSTRACT

The increasing occurrence of harmful algal blooms (HABs) in freshwater ecosystems detrimentally affect global water environments. Zooplankton's role in controlling HABs is hindered by contaminant exposure, necessitating research into combined stressors' ecological impacts. The response of Daphnia, a freshwater keystone species, to environmental stressors can be influenced by its maternal effects. Here, we investigated the combined effects of the world-widely used insecticide spinetoram and non-toxic HABs species Microcystis aeruginosa on the life-history traits of D. pulex offspring produced from different maternal food conditions. Four maternal groups were established, with each group receiving a specific blend of C. vulgaris (Ch) and M. aeruginosa (Ma) in varying proportions: A (100% Ch), B (90% Ch + 10% Ma), C (80% Ch + 20% Ma), and D (70% Ch + 30% Ma). The offspring from the third brood were gathered, and a 21-day experiment was carried out, involving various feeding groups (AA, AD, BA, BB, CA, CC, DA, and DD). Results demonstrated that grazing on M. aeruginosa by D. pulex induced maternal effects on their offspring, with the continuous exposure group showing an enhanced tolerance to M. aeruginosa. This study also unveiled that spinetoram could interfere with the molting of D. pulex, leading to developmental retardation. The Recovery Group exhibited an intriguing phenomenon: under the influence of both concentrations of the pesticide spinetoram (0.18, 0.35 µg L-1), D. pulex produced more offspring. This might be due to a combined strategy of allocating more energy towards reproduction in response to low-quality food and a potential hormetic effect from low concentrations of spinetoram. Assessing the interplay of combined stressors across multiple generations, encompassing harmful algal blooms (HABs) and environmental pollutants, is essential for predicting population responses to evolving environmental conditions. This understanding is vital for the protection and management of aquatic environments and ecosystems.


Subject(s)
Macrolides , Microcystis , Animals , Microcystis/physiology , Daphnia pulex , Ecosystem , Maternal Inheritance , Daphnia
2.
Environ Sci Pollut Res Int ; 29(31): 47148-47158, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35175534

ABSTRACT

Spinetoram is one of the most worldwidely used pesticides for its high insecticidal efficacy and low human toxicity. Following the large usage of spinetoram, the ecotoxicity and environmental risks to aquatic ecosystems have call for urgent study. In the present study, we investigated the combined effects of spinetoram and the harmful alga Microcystis aeruginosa in freshwater, on survival and reproduction of Daphnia pulex. Acute toxicity test of spinetoram resulted in negative effects on survival, with a 48-h LC50 value of 37.71 µg L-1. Under the long-time exposure to environmentally relevant concentrations (0.18 and 0.35 µg L-1) of spinetoram and a low composition of Microcystis (30%) in the diet, D. pulex showed both shorter longevity and lower fecundity; the time to first brood also increased. At population level, carrying capacity was highly decreased by spinetoram and Microcystis, whereas a significant decrease of intrinsic growth rate was observed at 0.35 µg L-1 spinetoram with 30% Microcystis as food. The present study highlighted that pesticide spinetoram had highly toxic effects on D. pulex and could reduce the tolerance of D. pulex to M. aeruginosa, causing great effects on D. pulex population in natural waterbodies.


Subject(s)
Cladocera , Cyanobacteria , Microcystis , Pesticides , Animals , Daphnia , Ecosystem , Macrolides , Pesticides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...