Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895201

ABSTRACT

Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.

2.
Sci Transl Med ; 15(707): eadf7006, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37531417

ABSTRACT

In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Prostatic Neoplasms , SOXB1 Transcription Factors , Small Cell Lung Carcinoma , Humans , Male , Adenocarcinoma/pathology , Down-Regulation , Lung Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Small Cell Lung Carcinoma/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Exportin 1 Protein
3.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546906

ABSTRACT

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.

4.
J Thorac Oncol ; 17(8): 1014-1031, 2022 08.
Article in English | MEDLINE | ID: mdl-35691495

ABSTRACT

INTRODUCTION: SCLC is a highly aggressive neuroendocrine tumor that is characterized by early acquired therapeutic resistance and modest benefit from immune checkpoint blockade (ICB). Repression of the major histocompatibility complex class I (MHC-I) represents a key mechanism driving resistance to T cell-based immunotherapies. METHODS: We evaluated the role of the lysine-specific demethylase 1 (LSD1) as a determinant of MHC-I expression, functional antigen presentation, and immune activation in SCLC in vitro and in vivo through evaluation of both human SCLC cell lines and immunocompetent mouse models. RESULTS: We found that targeted inhibition of LSD1 in SCLC restores MHC-I cell surface expression and transcriptionally activates genes encoding the antigen presentation pathway. LSD1 inhibition further activates interferon signaling, induces tumor-intrinsic immunogenicity, and sensitizes SCLC cells to MHC-I-restricted T cell cytolysis. Combination of LSD1 inhibitor with ICB augments the antitumor immune response in refractory SCLC models. Together, these data define a role for LSD1 as a potent regulator of MHC-I antigen presentation and provide rationale for combinatory use of LSD1 inhibitors with ICB to improve therapeutic response in SCLC. CONCLUSIONS: Epigenetic silencing of MHC-I in SCLC contributes to its poor response to ICB. Our study identifies a previously uncharacterized role for LSD1 as a regulator of MHC-I antigen presentation in SCLC. LSD1 inhibition enables MHC-I-restricted T cell cytolysis, induces immune activation, and augments the antitumor immune response to ICB in SCLC.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I , Histone Demethylases , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Antigens, Neoplasm , B7-H1 Antigen , Genes, MHC Class I , Histocompatibility Antigens Class I/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/pathology
5.
Cell Rep ; 39(7): 110814, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584676

ABSTRACT

Small cell lung cancers (SCLCs) have high mutational burden but are relatively unresponsive to immune checkpoint blockade (ICB). Using SCLC models, we demonstrate that inhibition of WEE1, a G2/M checkpoint regulator induced by DNA damage, activates the STING-TBK1-IRF3 pathway, which increases type I interferons (IFN-α and IFN-ß) and pro-inflammatory chemokines (CXCL10 and CCL5), facilitating an immune response via CD8+ cytotoxic T cell infiltration. We further show that WEE1 inhibition concomitantly activates the STAT1 pathway, increasing IFN-γ and PD-L1 expression. Consistent with these findings, combined WEE1 inhibition (AZD1775) and PD-L1 blockade causes remarkable tumor regression, activation of type I and II interferon pathways, and infiltration of cytotoxic T cells in multiple immunocompetent SCLC genetically engineered mouse models, including an aggressive model with stabilized MYC. Our study demonstrates cell-autonomous and immune-stimulating activity of WEE1 inhibition in SCLC models. Combined inhibition of WEE1 plus PD-L1 blockade represents a promising immunotherapeutic approach in SCLC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , Cell Cycle Proteins , Lung Neoplasms , Membrane Proteins , Protein-Tyrosine Kinases , STAT1 Transcription Factor , Small Cell Lung Carcinoma , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Drug Synergism , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Membrane Proteins/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , STAT1 Transcription Factor/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology
6.
Cancer Res ; 82(3): 472-483, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34815254

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive malignancy characterized by early metastasis and extreme lethality. The backbone of SCLC treatment over the past several decades has been platinum-based doublet chemotherapy, with the recent addition of immunotherapy providing modest benefits in a subset of patients. However, nearly all patients treated with systemic therapy quickly develop resistant disease, and there is an absence of effective therapies for recurrent and progressive disease. Here we conducted CRISPR-Cas9 screens using a druggable genome library in multiple SCLC cell lines representing distinct molecular subtypes. This screen nominated exportin-1, encoded by XPO1, as a therapeutic target. XPO1 was highly and ubiquitously expressed in SCLC relative to other lung cancer histologies and other tumor types. XPO1 knockout enhanced chemosensitivity, and exportin-1 inhibition demonstrated synergy with both first- and second-line chemotherapy. The small molecule exportin-1 inhibitor selinexor in combination with cisplatin or irinotecan dramatically inhibited tumor growth in chemonaïve and chemorelapsed SCLC patient-derived xenografts, respectively. Together these data identify exportin-1 as a promising therapeutic target in SCLC, with the potential to markedly augment the efficacy of cytotoxic agents commonly used in treating this disease. SIGNIFICANCE: CRISPR-Cas9 screening nominates exportin-1 as a therapeutic target in SCLC, and exportin-1 inhibition enhances chemotherapy efficacy in patient-derived xenografts, providing a novel therapeutic opportunity in this disease.


Subject(s)
Karyopherins/metabolism , Lung Neoplasms/drug therapy , Receptors, Cytoplasmic and Nuclear/metabolism , Small Cell Lung Carcinoma/drug therapy , Animals , Cell Line, Tumor , Humans , Lung Neoplasms/pathology , Mice , Small Cell Lung Carcinoma/pathology , Exportin 1 Protein
7.
J Hematol Oncol ; 14(1): 170, 2021 10 16.
Article in English | MEDLINE | ID: mdl-34656143

ABSTRACT

BACKGROUND: Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis. We hypothesized that multi-parameter profiling of the components of mixed histology (LUAD/LUSC) tumors could provide insight into factors licensing lineage plasticity between these histologies. METHODS: We performed genomic, epigenomics, transcriptomics and protein analyses of microdissected LUAD and LUSC components from mixed histology tumors, pre-/post-transformation tumors and reference non-transformed LUAD and LUSC samples. We validated our findings through genetic manipulation of preclinical models in vitro and in vivo and performed patient-derived xenograft (PDX) treatments to validate potential therapeutic targets in a LUAD PDX model acquiring LUSC features after osimertinib treatment. RESULTS: Our data suggest that LUSC transdifferentiation is primarily driven by transcriptional reprogramming rather than mutational events. We observed consistent relative upregulation of PI3K/AKT, MYC and PRC2 pathway genes. Concurrent activation of PI3K/AKT and MYC induced squamous features in EGFR-mutant LUAD preclinical models. Pharmacologic inhibition of EZH1/2 in combination with osimertinib prevented relapse with squamous-features in an EGFR-mutant patient-derived xenograft model, and inhibition of EZH1/2 or PI3K/AKT signaling re-sensitized resistant squamous-like tumors to osimertinib. CONCLUSIONS: Our findings provide the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.


Subject(s)
Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Transdifferentiation , Humans , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Transcriptome
8.
Cancer Discov ; 11(12): 3028-3047, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34155000

ABSTRACT

Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUAD) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre/posttransformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre/posttransformation samples, supports that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in the PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacologic inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of NE transformation in lung cancer. SIGNIFICANCE: The difficulty in collection of transformation samples has precluded the performance of molecular analyses, and thus little is known about the lineage plasticity mechanisms leading to LUAD-to-SCLC transformation. Here, we describe biological pathways dysregulated upon transformation and identify potential predictors and potential therapeutic vulnerabilities of NE transformation in the lung. See related commentary by Meador and Lovly, p. 2962. This article is highlighted in the In This Issue feature, p. 2945.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neuroendocrine Tumors , Small Cell Lung Carcinoma , Adenocarcinoma of Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Mutation , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Phosphatidylinositol 3-Kinases/genetics , Small Cell Lung Carcinoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...