Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316282

ABSTRACT

Ginkgo biloba extract (GBE) had several effects on the human body as one of the widely used phytopharmaceuticals, but it had no application in microbial enhancement in the environmental field. The study focused on the impact of GBE on denitrification specifically under neutral conditions. At the identified optimal addition ratio of 2% (v/v), the system exhibited a noteworthy increase in nitrate reduction rate (NRR) by 56.34%, elevating from 0.71 to 1.11 mg-N/(L·h). Moreover, the extraction of microbial extracellular polymeric substance (EPS) at this ratio revealed changes in the composition of EPS, the electron exchange capacity (EEC) was enhanced from 87.16 to 140.4 µmol/(g C), and the transfer impedance was reduced within the EPS. The flavin, fulvic acid (FA), and humic acid (HA) provided a π-electron conjugated structure for the denitrification system, enhancing extracellular electron transfer (EET) by stimulating carbon source metabolism. GBE also improved electron transfer system activity (ETSA) from 0.025 to 0.071 µL O2/(g·min·prot) and the content of NADH enhanced by 22.90% while significantly reducing the activation energy (Ea) by 85.6% in the denitrification process. The synergy of improving both intracellular and extracellular electron transfer, along with the reduction of Ea, notably amplified the initiation and reduction rates of the denitrification process. Additionally, GBE demonstrated suitability for denitrification across various pH levels, enhancing microbial resilience in alkaline conditions and promoting survival and proliferation. Overall, these findings open the door to potential applications of GBE as a natural additive in the environmental field to improve the efficiency of denitrification processes, which are essential for nitrogen removal in various environmental contexts.


Subject(s)
Denitrification , Extracellular Polymeric Substance Matrix , Ginkgo Extract , Humans , Electrons , Plant Extracts , Nitrogen , Bioreactors
2.
Sci Total Environ ; 863: 160858, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36526198

ABSTRACT

Sulfur-based autotrophic bioremediation is recognized as an environmentally-friendly and effective method for the treatment of Cr(VI) in groundwater. However, inorganic carbon (IC), especially IC-rich solid kitchen waste, has rarely been reported as an important factor in the autotrophic process. In China, kitchen waste containing IC is generated in large quantities, and in combination with Cr(VI) autotrophic treatment technology in groundwater can achieve a win-win situation. Herein, the efficiency of Cr(VI)-bioreduction coupling solid inorganic carbon (SIC) (e.g. marble, egg shell, oyster shell, and NSAD synthetic material) and liquid inorganic carbon (LIC) was compared for the first time. After 18 d incubation, there were significant differences in Cr(VI) reduction efficiency and microbial community between SIC-bioreactors and LIC-bioreactors. Higher electron transfer activity, greater bioavailability of organics, and multiple Cr(VI) reductases were detected in SIC-biosystems, which effectively promoted Cr(VI) energy metabolism and enzyme-mediated biological reduction. High-throughput 16S rRNA gene sequencing reveled multiple cooperative mechanism in different substrate biosystems. This study not only advances the understanding of SIC coupled with Cr(VI) autotrophic bioreduction, but also provides new insights for the treatment of solid kitchen waste and groundwater bioremediation.


Subject(s)
Carbon , Chromium , Animals , RNA, Ribosomal, 16S , Oxidation-Reduction , Chromium/metabolism , Sulfur , Calcium Carbonate
SELECTION OF CITATIONS
SEARCH DETAIL
...