Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 150(3): 135, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499838

ABSTRACT

BACKGROUND: Chemotherapy combined with immune checkpoint inhibitors (IC), bevacizumab (BC), or both (IBC) is the preferred first-line therapy for PD-L1-negative and oncogenic-driver wild-type metastatic lung adenocarcinoma. However, the optimal strategy is still undetermined. METHODS: This retrospective study enrolled PD-L1-negative metastatic lung adenocarcinoma patients from four cancer centers between January 1, 2018 and June 30, 2022. All the patients received IC, BC, or IBC as the first-line therapies. The efficacy and safety were evaluated. RESULTS: A total of 205 patients were included, with 60, 83, and 62 patients in IC, BC, and IBC groups, respectively. The baseline characteristics among three groups were well balanced. Patients treated with IBC had the highest objective response rate (ORR) (43.5%) and disease control rate (DCR) (100%) relative to those treated with IC (40.4%, 84.2%) or BC (40.5%, 96.2%) (ORR: P = 0.919, DCR: P < 0.01). Compared with the IC (6.74 m) or BC (8.28 m), IBC treatment significantly improved median progression-free survival (mPFS) (9.53 m, P = 0.005). However, no difference in overall survival (OS) was observed. When stratified by different clinical and molecular information, we found that male gender, ever smoking, wild-type genes mutations, and adrenal metastasis predict superior PFS benefit when treated with IBC. In patients with liver metastasis, IBC or BC treatment displayed better PFS compared with IC. No additional adverse reactions were observed in IBC group compared with other two groups. CONCLUSION: Combined IBC treatment achieved superior DCR and PFS compared with IC or BC in patients with PD-L1-negative metastatic lung adenocarcinoma, while did not increase the adverse events.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Male , B7-H1 Antigen , Bevacizumab , Retrospective Studies , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy
2.
Int J Biol Macromol ; 253(Pt 4): 127094, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37758103

ABSTRACT

Novel nanoparticles (Z-R/H) were successfully fabricated by a resveratrol-grafted zein covalent conjugate (Z-R) combined with quaternary ammonium chitosan (HTCC), which were used as stabilizers to prepare peppermint oil (PO) Pickering emulsions with antioxidant activity. HTCC effectively adjusted wettability of Z-R conjugate, and three-phase contact angle of Z-R/H3:1 was moderate (95.01°). The influencing factors of Pickering emulsion formation, including volume fraction of PO, concentration of Z-R/H, and mass ratio of Z-R to HTCC, were evaluated by droplet size, ζ-potential, microscopic observation, and stability index analysis. Pickering emulsions stabilized by Z-R/H3:1 showed excellent physical stability under heat treatment. Z-R/H nanoparticles adsorbed on the oil-water interface yielded a dense filling layer as a physical barrier to improve the emulsion stability, which was validated by confocal laser-scanning microscopy. After 4 weeks of storage, retention rate of PO in Pickering emulsion stabilized by Z-R/H3:1 remained high (72.1 %). Electronic nose analysis showed that Z-R/H3:1-stabilized emulsion effectively prevented volatilization of PO aroma components. Additionally, PO and Z-R/H nanoparticles provided an additive antioxidant effect of Pickering emulsions against DPPH and ABTS free radicals. In summary, these novel Z-R/H nanoparticle offer promising applications as a stabilizer with great potential in preparing functional Pickering emulsions to improve essential oil delivery.


Subject(s)
Chitosan , Nanoparticles , Zein , Emulsions , Antioxidants/pharmacology , Resveratrol , Particle Size
3.
Int J Biol Macromol ; 233: 123414, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36708891

ABSTRACT

Accurate and efficient detection of food freshness is of great significance to guarantee food safety. Herein, pH sensitive colorimetric films with considerable biological activities have been prepared by combining red cabbage anthocyanin extracts (RCE) with collagen hydrolysate-chitosan (CH-CS) matrix film. The formation mechanism of CH-CS-RCE films was discussed by SEM, FT-IR and XRD, which showed that RCE was successfully fixed in CH-CS film through hydrogen bonding and electrostatic interaction. The CH-CS-RCE films exhibited good mechanical properties, high barrier ability, excellent thermal stability, significant antioxidant and antimicrobial activity, and especially sensitive response to pH and ammonia. Fickian diffusion was the main mechanism for the release of RCE from CH-CS-RCE films and such release mechanism facilitated the maintenance of functional features of films. During the storage of shrimps at 4 °C, CH-CS-RCE2% showed a remarkable preservation effect on shrimps, and their shelf life was prolonged from 2 d to 5 d. Furthermore, CH-CS-RCE2% provided a dynamic visual color switching to detect the freshness of shrimp, realizing real-time monitoring of freshness. Color information (RGB) extracted via smartphone APP was used to enhance the accuracy and universality of freshness indication. Thus, this multifunctional film has great potential in food preservation and freshness monitoring.


Subject(s)
Chitosan , Chitosan/chemistry , Food Packaging , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration , Collagen , Anthocyanins/chemistry
4.
Foods ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36496666

ABSTRACT

Lipid oxidation is still a major problem complicating the development of food emulsions. In this study, an antioxidant Pickering emulsion stabilized by resveratrol-grafted zein (Z-R) conjugates and pectin (P) complex particles was prepared. The hydrophilic pectin successfully adjusted the wettability of Z-R; when the mass ratio of Z-R to P was 2:1 (Z-R/P2:1), the three-phase contact angle was 90.68°, and the wettability of the particles was close to neutral. Rheological analysis showed that the emulsion formed an elastic gel structure. FTIR spectra indicated that there was a hydrogen bond and electrostatic interaction between Z-R and P. The disappearance of characteristic infrared peaks of corn oil was due to a dense protective film formed on the surface of oil drops by Z-R/P2:1 particles, which was confirmed by confocal laser scanning microscopy. The emulsion stabilized by Z-R/P2:1 had excellent physical stability at a wide range of pH values (4-9), salt ion concentrations (0.04-0.15 mol·L-1) and storage times (0-30 days). The anti-lipid oxidation ability of the emulsion was outstanding; after storage for 14 days at room temperature, the MDA content in the emulsion was only 123.85 µmol/kg oil. In conclusion, the Z-R/P2:1 particles prepared in this study can effectively stabilize a Pickering emulsion and expand the usability of the method for constructing antioxidant Pickering emulsions.

SELECTION OF CITATIONS
SEARCH DETAIL
...