Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(4): 4943-4954, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33492121

ABSTRACT

Direct utilization of methane in solid oxide fuel cells (SOFCs) is greatly impeded by the grievous carbon deposition and the much depressed catalytic activity. In this work, a promising anode, taking finger-like porous YSZ as the anode substrate and impregnated Ni0.08Co0.02Ce0.9O2-δ@Ni0.8Co0.2O as the novel catalyst, is fabricated via the phase conversion-combined tape-casting technique. This anode shows commendable mechanical strength and excellent catalytic activity and stability toward the methane conversion reactions, which is attributed to the exsolved alloy nanoparticles and the active oxygen species on the reduced Ni0.08Co0.02Ce0.9O2-δ catalyst as well as the facilitated methane transport rooting in the special open-pore microstructure of the anode substrate. Strikingly, this button cell delivers an excellent peak power density of 730 mW cm-2 at 800 °C in 97% CH4/3% H2O fuel, only 9% lower than that in 97% H2/3% H2O. Our work shed new light on the SOFC anode developments.

2.
ACS Appl Mater Interfaces ; 12(23): 25809-25817, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32421301

ABSTRACT

Advancement of a hydrogen economy requires establishment of a whole supply chain including hydrogen production, purification, storage, utilization, and recovery. Nevertheless, it remains challenging to selectively purify hydrogen out of H2-containing streams, especially at low concentrations. Herein, a novel protonic ceramic electrochemical cell is reported that can sustainably separate pure H2 out of H2-diluted streams over the temperature regime of 350-500 °C by mildly controlling the electric voltage. With the Faraday's efficiency above 96%, the measured H2 separation rate at 0.51 V and 500 °C is 3.3 mL cm-2 min-1 out of 10% H2 - 90% N2, or 2.4 mL cm-2 min-1 out of 10% H2 - 90% CH4 taken as an example of renewable hydrogen blended in the natural gas pipelines. Such high hydrogen separation capability at reduced temperatures is enabled by the nanoporous nickel catalysts and well-bonded electrochemical interfaces as produced from well-controlled in situ slow reduction of nickel oxides. These results demonstrate technical feasibility of onsite purification of hydrogen prior to their practical applications such as fuels for fuel cell electric vehicles.

3.
Small ; 11(41): 5581-8, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26307555

ABSTRACT

Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.

4.
Sensors (Basel) ; 15(7): 17558-71, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26205270

ABSTRACT

Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers-one thick and the other thin-fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40-1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages.

5.
Sci Rep ; 2: 462, 2012.
Article in English | MEDLINE | ID: mdl-22708057

ABSTRACT

Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm(0.5)Sr(0.5)CoO(3-δ) (SSC) catalyst coating bonded onto the internal surface of a high-porosity La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3-δ) (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm(2) at 650°C and 0.043 Ω cm(2) at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm(-2) at 650°C and 1.46 W cm(-2) at 600°C when operated on humidified hydrogen fuel and air oxidant.


Subject(s)
Electric Power Supplies , Nanostructures/chemistry , Oxides/chemistry , Oxygen/chemistry , Catalysis , Cobalt/chemistry , Electric Conductivity , Electrochemistry/instrumentation , Electrochemistry/methods , Electrodes , Electrolytes/chemistry , Gallium/chemistry , Lanthanum/chemistry , Magnesium/chemistry , Microscopy, Electron, Scanning , Nanopores/ultrastructure , Nanostructures/ultrastructure , Oxidation-Reduction , Porosity , Reproducibility of Results , Samarium/chemistry , Strontium/chemistry , Temperature
6.
Nature ; 435(7043): 795-8, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944699

ABSTRACT

High energy efficiency and energy density, together with rapid refuelling capability, render fuel cells highly attractive for portable power generation. Accordingly, polymer-electrolyte direct-methanol fuel cells are of increasing interest as possible alternatives to Li ion batteries. However, such fuel cells face several design challenges and cannot operate with hydrocarbon fuels of higher energy density. Solid-oxide fuel cells (SOFCs) enable direct use of higher hydrocarbons, but have not been seriously considered for portable applications because of thermal management difficulties at small scales, slow start-up and poor thermal cyclability. Here we demonstrate a thermally self-sustaining micro-SOFC stack with high power output and rapid start-up by using single chamber operation on propane fuel. The catalytic oxidation reactions supply sufficient thermal energy to maintain the fuel cells at 500-600 degrees C. A power output of approximately 350 mW (at 1.0 V) was obtained from a device with a total cathode area of only 1.42 cm2.

7.
Science ; 308(5723): 844-7, 2005 May 06.
Article in English | MEDLINE | ID: mdl-15802567

ABSTRACT

There are substantial barriers to the introduction of hydrogen fuel cells for transportation, including the high cost of fuel-cell systems, the current lack of a hydrogen infrastructure, and the relatively low fuel efficiency when using hydrogen produced from hydrocarbons. Here, we describe a solid oxide fuel cell that combines a catalyst layer with a conventional anode, allowing internal reforming of iso-octane without coking and yielding stable power densities of 0.3 to 0.6 watts per square centimeter. This approach is potentially the basis of a simple low-cost system that can provide substantially higher fuel efficiency by using excess fuel-cell heat for the endothermic reforming reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...