Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 609
Filter
1.
ACS Pharmacol Transl Sci ; 7(7): 2154-2173, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39022354

ABSTRACT

2-Arylethynyl (N)-methanocarba adenosine 5'-methylamides are selective A3 adenosine receptor (AR) agonists containing a preestablished receptor-preferred pseudoribose conformation. Here, we compare analogues having bulky 2-substitution, either containing or lacking an ethynyl spacer between adenine and a cyclic group. 2-Aryl compounds 9-11, 13, 14, 19, 22, 23, 27, 29, 31, and 34, lacking a spacer, had human (h) A3AR K i values of 2-30 nM, and others displayed lower affinity. Mouse (m) A3AR affinity varied, with 2-arylethynyl having a higher affinity than 2-aryl analogues (7, 8 > 3c, 3d > 3b). However, 2-aryl-4'-truncated derivatives had greatly reduced hA3AR affinity, even containing affinity-enhancing N 6-dopamine-derived substituents. Molecular modeling, including molecular dynamics simulation, predicted stable poses in the canonical A3AR agonist binding site, but 2-aryl (ECL2 interactions) and 2-arylethynyl (TM2 interactions) substituents have different conformations and environments. In a hA3AR miniGαi recruitment assay, 31 (MRS8062) was (slightly) more potent compared to a ß-arrestin2 recruitment assay, both in engineered HEK293T cells, and its maximal efficacy (E max) was much higher (165%) than reference agonist NECA's. Thus, in the 2-aryl series, A3AR affinity and selectivity were variable and generally reduced compared to the 2-arylethynyl series, with a greater dependence on the specific aryl group present. Selected compounds were studied in vivo in an ischemic model of peripheral artery disease (PAD). Rigidified 2-arylethynyl analogues 3a-3c were protective in this model of skeletal muscle ischemia-reperfusion injury/claudication, as previously shown only for moderately A3AR-selective ribosides or (N)-methanocarba derivatives. Thus, we have expanded the A3AR agonist SAR for (N)-methanocarba adenosines.

2.
J Med Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959401

ABSTRACT

A3 adenosine receptor (A3AR) positive allosteric modulators (PAMs) (2,4-disubstituted-1H-imidazo[4,5-c]quinolin-4-amines) allosterically increase the Emax of A3AR agonists, but not potency, due to concurrent orthosteric antagonism. Following mutagenesis/homology modeling of the proposed lipid-exposed allosteric binding site on the cytosolic side, we functionalized the scaffold, including heteroatom substitutions and exocyclic phenylamine extensions, to increase allosteric binding. Strategically appended linear alkyl-alkynyl chains with terminal amino/guanidino groups improved allosteric effects at both human and mouse A3ARs. The chain length, functionality, and attachment position were varied to modulate A3AR PAM activity. For example, 26 (MRS8247, p-alkyne-linked 8 methylenes) and homologues increased agonist Cl-IB-MECA's Emax and potency ([35S]GTPγS binding). The putative mechanism involves a flexible, terminally cationic chain penetrating the lipid environment for stable electrostatic anchoring to cytosolic phospholipid head groups, suggesting "lipid trolling", supported by molecular dynamic simulation of the active-state model. Thus, we have improved A3AR PAM activity through rational design based on an extrahelical, lipidic binding site.

3.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893850

ABSTRACT

Development of high-performance cutting tool materials is one of the critical parameters enhancing the surface finishing of high-speed machined products. Ti(C,N)-based cermets reinforced with and without different contents of silicon nitride were designed and evaluated to satisfy the requirements. In fact, the effect of silicon nitride addition to Ti(C,N)-based cermet remains unclear. The purpose of this study is to investigate the influence of Si3N4 additive on microstructure, mechanical properties, and thermal stability of Ti(C,N)-based cermet cutting tools. In the present work, α-Si3N4 "grade SN-E10" was utilized with various fractions up to 6 wt.% in the designed cermets. A two-step reactive sintering process under vacuum was carried out for the green compact of Ti(C,N)-based cermet samples. The samples with 4 wt.% Si3N4 have an apparent solid density of about 6.75 g/cm3 (relative density of about 98 %); however, the cermet samples with 2 wt.% Si3N4 exhibit a superior fracture toughness of 10.82 MPa.m1/2 and a traverse rupture strength of 1425.8 MPa. With an increase in the contents of Si3N4, the Vickers hardness and fracture toughness of Ti(C,N)-based cermets have an inverse behavior trend. The influence of Si3N4 addition on thermal stability is clarified to better understand the relationship between thermal stability and mechanical properties of Ti(C,N)-based cermets.

4.
J Med Chem ; 67(12): 10490-10507, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38845345

ABSTRACT

Building on the preceding structural analysis and a structure-activity relationship (SAR) of 8-aryl-2-hexynyl nucleoside hA2AAR antagonist 2a, we strategically inverted C2/C8 substituents and eliminated the ribose moiety. These modifications aimed to mitigate potential steric interactions between ribose and adenosine receptors. The SAR findings indicated that such inversions significantly modulated hA3AR binding affinities depending on the type of ribose, whereas removal of ribose altered the functional efficacy via hA2AAR. Among the synthesized derivatives, 2-aryl-8-hexynyl adenine 4a demonstrated the highest selectivity for hA2AAR (Ki,hA2A = 5.0 ± 0.5 nM, Ki,hA3/Ki,hA2A = 86) and effectively blocked cAMP production and restored IL-2 secretion in PBMCs. Favorable pharmacokinetic properties and a notable enhancement of anticancer effects in combination with an mAb immune checkpoint blockade were observed upon oral administration of 4a. These findings establish 4a as a viable immune-oncology therapeutic candidate.


Subject(s)
Adenine , Adenosine A2 Receptor Antagonists , Nucleosides , Receptor, Adenosine A2A , Ribose , Humans , Structure-Activity Relationship , Animals , Adenine/pharmacology , Adenine/chemistry , Adenine/analogs & derivatives , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/chemical synthesis , Nucleosides/chemistry , Nucleosides/pharmacology , Nucleosides/chemical synthesis , Ribose/chemistry , Ribose/metabolism , Receptor, Adenosine A2A/metabolism , Mice , Molecular Structure , Rats , Female , Cell Line, Tumor
5.
Inorg Chem ; 63(28): 12935-12942, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38941590

ABSTRACT

Enantioselective synthesis of homochiral rare earth clusters is still a great challenge. In this work, we developed an efficient "cluster to cluster" approach, that is, a pair of enantiomerical R/S-{Nd8Fe3}-oxo clusters were successfully obtained from the presynthesized racemic {Nd9Fe2}-oxo cluster. R/S-hydrobenzoin ligands trigger the transformation of the pristine clusters by an SN2-like mechanism. Compared to the pristine cluster with an achiral core, the new cluster exhibits hierarchical chirality, from ligand chirality to interface chirality, then to helix chirality, and finally to supramolecular double helix chirality. The spectral experiments monitored the transformation and confirmed distinctly structure-related optical activity. The enantiomeric pure cluster also exhibits a potential asymmetric catalytic activity.

6.
Purinergic Signal ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833181

ABSTRACT

The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.

7.
Pain ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38709489

ABSTRACT

ABSTRACT: Terpenes are small hydrocarbon compounds that impart aroma and taste to many plants, including Cannabis sativa. A number of studies have shown that terpenes can produce pain relief in various pain states in both humans and animals. However, these studies were methodologically limited and few established mechanisms of action. In our previous work, we showed that the terpenes geraniol, linalool, ß-pinene, α-humulene, and ß-caryophyllene produced cannabimimetic behavioral effects via multiple receptor targets. We thus expanded this work to explore the potential antinociception and mechanism of these Cannabis terpenes in a mouse model of chronic pain. We first tested for antinociception by injecting terpenes (200 mg/kg, IP) into male and female CD-1 mice with mouse models of chemotherapy-induced peripheral neuropathy (CIPN) or lipopolysaccharide-induced inflammatory pain, finding that the terpenes produced roughly equal antinociception to 10 mg/kg morphine or 3.2 mg/kg WIN55,212. We further found that none of the terpenes produced reward as measured by conditioned place preference, while low doses of terpene (100 mg/kg) combined with morphine (3.2 mg/kg) produced enhanced antinociception vs either alone. We then used the adenosine A2A receptor (A2AR) selective antagonist istradefylline (3.2 mg/kg, IP) and spinal cord-specific CRISPR knockdown of the A2AR to identify this receptor as the mechanism for terpene antinociception in CIPN. In vitro cAMP and binding studies and in silico modeling studies further suggested that the terpenes act as A2AR agonists. Together these studies identify Cannabis terpenes as potential therapeutics for chronic neuropathic pain and identify a receptor mechanism for this activity.

8.
Hepatobiliary Surg Nutr ; 13(2): 198-213, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617471

ABSTRACT

Background: Adequate evaluation of degrees of liver cirrhosis is essential in surgical treatment of hepatocellular carcinoma (HCC) patients. The impact of the degrees of cirrhosis on prediction of post-hepatectomy liver failure (PHLF) remains poorly defined. This study aimed to construct and validate a combined pre- and intra-operative nomogram based on the degrees of cirrhosis in predicting PHLF in HCC patients using prospective multi-center's data. Methods: Consecutive HCC patients who underwent hepatectomy between May 18, 2019 and Dec 19, 2020 were enrolled at five tertiary hospitals. Preoperative cirrhotic severity scoring (CSS) and intra-operative direct liver stiffness measurement (DSM) were performed to correlate with the Laennec histopathological grading system. The performances of the pre-operative nomogram and combined pre- and intra-operative nomogram in predicting PHLF were compared with conventional predictive models of PHLF. Results: For 327 patients in this study, histopathological studies showed the rates of HCC patients with no, mild, moderate, and severe cirrhosis were 41.9%, 29.1%, 22.9%, and 6.1%, respectively. Either CSS or DSM was closely correlated with histopathological stages of cirrhosis. Thirty-three (10.1%) patients developed PHLF. The 30- and 90-day mortality rates were 0.9%. Multivariate regression analysis showed four pre-operative variables [HBV-DNA level, ICG-R15, prothrombin time (PT), and CSS], and one intra-operative variable (DSM) to be independent risk factors of PHLF. The pre-operative nomogram was constructed based on these four pre-operative variables together with total bilirubin. The combined pre- and intra-operative nomogram was constructed by adding the intra-operative DSM. The pre-operative nomogram was better than the conventional models in predicting PHLF. The prediction was further improved with the combined pre- and intra-operative nomogram. Conclusions: The combined pre- and intra-operative nomogram further improved prediction of PHLF when compared with the pre-operative nomogram. Trial Registration: Clinicaltrials.gov Identifier: NCT04076631.

9.
Purinergic Signal ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526670

ABSTRACT

The P2Y6 receptor, activated by uridine diphosphate (UDP), is a target for antagonists in inflammatory, neurodegenerative, and metabolic disorders, yet few potent and selective antagonists are known to date. This prompted us to use machine learning as a novel approach to aid ligand discovery, with pharmacological evaluation at three P2YR subtypes: initially P2Y6 and subsequently P2Y1 and P2Y14. Relying on extensive published data for P2Y6R agonists, we generated and validated an array of classification machine learning model using the algorithms deep learning (DL), adaboost classifier (ada), Bernoulli NB (bnb), k-nearest neighbors (kNN) classifier, logistic regression (lreg), random forest classifier (rf), support vector classification (SVC), and XGBoost (XGB) classifier models, and the common consensus was applied to molecular selection of 21 diverse structures. Compounds were screened using human P2Y6R-induced functional calcium transients in transfected 1321N1 astrocytoma cells and fluorescent binding inhibition at closely related hP2Y14R expressed in CHO cells. The hit compound ABBV-744, an experimental anticancer drug with a 6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridine scaffold, had multifaceted interactions with the P2YR family: hP2Y6R inhibition in a non-surmountable fashion, suggesting that noncompetitive antagonism, and hP2Y1R enhancement, but not hP2Y14R binding inhibition. Other machine learning-selected compounds were either weak (experimental anti-asthmatic drug AZD5423 with a phenyl-1H-indazole scaffold) or inactive in inhibiting the hP2Y6R. Experimental drugs TAK-593 and GSK1070916 (100 µM) inhibited P2Y14R fluorescent binding by 50% and 38%, respectively, and all other compounds by < 20%. Thus, machine learning has led the way toward revealing previously unknown modulators of several P2YR subtypes that have varied effects.

10.
Structure ; 32(5): 523-535.e5, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38401537

ABSTRACT

We leveraged variable-temperature 19F-NMR spectroscopy to compare the conformational equilibria of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), across a range of temperatures ranging from lower temperatures typically employed in 19F-NMR experiments to physiological temperature. A2AAR complexes with partial agonists and full agonists showed large increases in the population of a fully active conformation with increasing temperature. NMR data measured at physiological temperature were more in line with functional data. This was pronounced for complexes with partial agonists, where the population of active A2AAR was nearly undetectable at lower temperature but became evident at physiological temperature. Temperature-dependent behavior of complexes with either full or partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. Cellular signaling experiments correlated with the temperature-dependent conformational equilibria of A2AAR in lipid nanodiscs but not in some detergents, underscoring the importance of the membrane environment in studies of GPCR function.


Subject(s)
Receptor, Adenosine A2A , Humans , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/chemistry , Temperature , Protein Binding , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/metabolism , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Protein Conformation , HEK293 Cells
11.
Purinergic Signal ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416332

ABSTRACT

The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1ß, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1ß, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.

13.
J Clin Rheumatol ; 30(2): 73-78, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38268091

ABSTRACT

OBJECTIVE: The purpose of this research was to ascertain the effectiveness of the newly established criteria for classifying IgG4-related disease (IgG4-RD), as applied to a large Chinese cohort in real-world clinical settings. METHODS: Patient data were procured from the digital health records of 4 prominent academic hospitals. The criterion standard for identifying IgG4-RD patients was from a seasoned rheumatologist. The control group consisted of individuals with other ailments such as cancer, other forms of pancreatitis, infectious diseases, and illnesses that mimic IgG4-RD. RESULTS: A total of 605 IgG4-RD patients and 760 mimickers were available for analysis. The 2019 EULAR/ACR criteria have a sensitivity of 69.1% and a specificity of 90.9% in this large Chinese cohort. IgG4-RD had a greater proportion of males (55.89% vs 36.25%, p < 0.001), an older average age at diagnosis (54.91 ± 13.44 vs 48.91 ± 15.71, p < 0.001), more pancreatic (29.59% vs 6.12%, p < 0.001) and salivary gland (63.30% vs 27.50%, p < 0.001) involvement, and a larger number of organ involvement (3.431 ± 2.054 vs 2.062 ± 1.748, p < 0.001) compared with mimickers. CONCLUSIONS: The 2019 EULAR/ACR criteria are effective in classifying IgG4-RD in Chinese patients, demonstrating high specificity and moderate sensitivity.


Subject(s)
Immunoglobulin G4-Related Disease , Pancreatitis , Humans , Male , Asian People , China , Immunoglobulin G4-Related Disease/diagnosis , Pancreatitis/diagnosis , Salivary Glands , Female
14.
Mol Pharmacol ; 105(3): 213-223, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38182432

ABSTRACT

This study describes the localization and computational prediction of a binding site for the A3 adenosine receptor (A3AR) positive allosteric modulator 2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1H-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y2847.55 in TMD7 and Y2938.54 in H8 and by π-NH bonding between Y2847.55 and the exocyclic amine. The 2-cyclohexyl group is positioned "upward" within a small hydrophobic subpocket created by residues in TMDs 1 and 7, while the 3,4-dichlorophenyl group extends toward the lipid interface. An H-bond between the N-1 amine of the heterocycle and the carbonyl of G291.49 further stabilizes the interaction. Molecular dynamics simulations predicted two metastable intermediates, one resembling a pose determined by molecular docking and a second involving transient interactions with Y2938.54; in simulations, each of these intermediates converges into the final bound state. Structure-activity-relationships for replacement of either of the identified exocyclic or endocyclic amines with heteroatoms lacking H-bond donating ability were consistent with the hypothetical pose. Thus, we characterized an allosteric pocket for 1H-imidazo[4,5-c]quinolin-4-amines that is consistent with data generated by orthogonal methods, which will aid in the rational design of improved A3AR positive allosteric modulators. SIGNIFICANCE STATEMENT: Orthosteric A3AR agonists have advanced in clinical trials for inflammatory conditions, liver diseases, and cancer. Thus, the clinical appeal of selective receptor activation could extend to allosteric enhancers, which would induce site- and time-specific activation in the affected tissue. By identifying the allosteric site for known positive allosteric modulators, structure-based drug discovery modalities can be enabled to enhance the pharmacological properties of the 1H-imidazo[4,5-c]quinolin-4-amine class of A3AR positive allosteric modulators.


Subject(s)
Amines , Receptors, Purinergic P1 , Molecular Docking Simulation , Allosteric Regulation , Receptors, Purinergic P1/metabolism , Binding Sites , Allosteric Site , Molecular Dynamics Simulation , Lipids
15.
Hepatol Int ; 18(1): 73-90, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159218

ABSTRACT

PURPOSE: Cytokeratin 19-positive cancer stem cells (CK19 + CSCs) and their tumor-associated macrophages (TAMs) have not been fully explored yet in the hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN: Single-cell RNA sequencing was performed on the viable cells obtained from 11 treatment-naïve HBV-associated HCC patients, including 8 CK19 + patients, to elucidate their transcriptomic landscape, CK19 + CSC heterogeneity, and immune microenvironment. Two in-house primary HCC cohorts (96 cases-related HBV and 89 cases with recurrence), TCGA external cohort, and in vitro and in vivo experiments were used to validate the results. RESULTS: A total of 64,581 single cells derived from the human HCC and adjacent normal tissues were sequenced, and 11 cell types were identified. The result showed that CK19 + CSCs were phenotypically and transcriptionally heterogeneous, co-expressed multiple hepatics CSC markers, and were positively correlated with worse prognosis. Moreover, the SPP1 + TAMs (TAM_SPP1) with strong M2-like features and worse prognosis were specifically enriched in the CK19 + HCC and promoted tumor invasion and metastasis by activating angiogenesis. Importantly, matrix metalloproteinase 9 (MMP9) derived from TAM_SPP1, as the hub gene of CK19 + HCC, was activated by the VEGFA signal. CONCLUSIONS: This study revealed the heterogeneity and stemness characteristics of CK19 + CSCs and specific immunosuppressive TAM_SPP1 in CK19 + HCC. The VEGFA signal can activate TAM_SPP1-derived MMP9 to promote the invasion and metastasis of CK19 + HCC tumors. This might provide novel insights into the clinical treatment of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , Matrix Metalloproteinase 9/genetics , Keratin-19/genetics , Keratin-19/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Neoplastic Stem Cells , Sequence Analysis, RNA , Tumor Microenvironment , Osteopontin/genetics , Osteopontin/metabolism
16.
Water Res ; 250: 121013, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38118252

ABSTRACT

The ecological risk of tritiated wastewater into the environment has attracted much attention. Assessing the ecological risk of tritium-containing pollution is crucial by studying low-activity tritium exposure's environmental and biological effects on freshwater micro-environment and the enrichment potential of organically bound tritium (OBT) in microalgae and aquatic plants. The impact of tritium-contaminated wastewater on the microenvironment of freshwater systems was analyzed using microcosm experiments to simulate tritium pollution in freshwater systems. Low activity tritium pollution (105 Bq/L) induced differences in microbial abundance, with Proteobacteria, Bacteroidota, and Desulfobacterota occupying important ecological niches in the water system. Low activity tritium (105-107 Bq/L) did not affect the growth of microalgae and aquatic plants, but OBT was significantly enriched in microalgae and two aquatic plants (Pistia stratiotes, Spirodela polyrrhiza), with the enrichment coefficients of 2.08-3.39 and 1.71-2.13, respectively. At the transcriptional level, low-activity tritium (105 Bq/L) has the risk of interfering with gene expression in aquatic plants. Four dominant cyanobacterial strains (Leptolyngbya sp., Synechococcus elongatus, Nostoc sp., and Anabaena sp.) were isolated and demonstrated good environmental adaptability to tritium pollution. Environmental factors can modify the tritium accumulation potential in cyanobacteria and microalgae, theoretically enhancing food chain transfer.


Subject(s)
Microalgae , Tritium/analysis , Wastewater , Environmental Pollution/analysis , Fresh Water/analysis
17.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(6): 958-965, 2023 Dec 18.
Article in Chinese | MEDLINE | ID: mdl-38101775

ABSTRACT

OBJECTIVE: To investigate the significance of anti-histidyl tRNA synthetase (Jo-1) antibody in idiopathic inflammatory myopathies (IIM) and its diseases spectrum. METHODS: We enrolled all the patients who were tested positive for anti-Jo-1 antibody by immunoblotting in Peking University People's Hospital between 2016 and 2022. And the patients diagnosed with anti-synthetase antibody syndrome (ASS) with negative serum anti-Jo-1 antibody were enrolled as controls. We analyzed the basic information, clinical characteristics, and various inflammatory and immunological indicators of the patients at the onset of illness. RESULTS: A total of 165 patients with positive anti-Jo-1 antibody were enrolled in this study. Among them, 80.5% were diagnosed with connective tissue disease. And 57.6% (95/165) were diagnosed with IIM, including ASS (84/165, 50.9%), immune-mediated necrotizing myopathy (7/165, 4.2%) and dermatomyositis (4/165, 2.4%). There were 23.0% (38/165) diagnosed with other connective tissue disease, mainly including rheumatoid arthritis (11/165, 6.7%), undifferentiated connective tissue disease (5/165, 3.0%), interstitial pneumonia with autoimmune features (5/165, 3.0%), undifferentiated arthritis (4/165, 2.4%), Sjögren's syndrome (3/165, 1.8%), systemic lupus erythematosus (3/165, 1.8%), systemic vasculitis (3/165, 1.8%), and so on. Other cases included 3 (1.8%) malignant tumor patients, 4 (2.4%) infectious cases and so on. The diagnoses were not clear in 9.1% (15 /165) of the cohort. In the analysis of ASS subgroups, the group with positive serum anti-Jo-1 antibody had a younger age of onset than those with negative serum anti-Jo-1 antibody (49.9 years vs. 55.0 years, P=0.026). Clinical manifestations of arthritis (60.7% vs. 33.3%, P=0.002) and myalgia (47.1% vs. 22.2%, P=0.004) were more common in the ASS patients with positive anti-Jo-1 antibody. With the increase of anti-Jo-1 antibody titer, the incidence of the manifestations of arthritis, mechanic hands, Gottron sign and Raynaud phenomenon increased, and the proportion of abnormal creatine kinase and α-hydroxybutyric dehydrogenase index increased in the ASS patients. The incidence of myalgia and myasthenia were significantly more common in this cohort when anti-Jo-1 antibody-positive ASS patients were positive for one and more myositis specific antibodies/myositis associated autoantibodies (P < 0.05). CONCLUSION: The disease spectrum in patients with positive serum anti-Jo-1 antibody includes a variety of diseases, mainly ASS. And anti-Jo-1 antibody can also be found in many connective tissue diseases, malignant tumor, infection and so on.


Subject(s)
Arthritis, Rheumatoid , Connective Tissue Diseases , Myositis , Neoplasms , Humans , Middle Aged , Myalgia , Myositis/diagnosis , Myositis/epidemiology , Autoantibodies
18.
ACS Med Chem Lett ; 14(12): 1640-1646, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116442

ABSTRACT

A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 µM, without activity (30 µM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.

19.
Inorg Chem ; 62(46): 19153-19158, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37934703

ABSTRACT

The ability to conceptually mimic biomolecules to construct emergency-functional homospiral aggregates remains a long-standing challenge. Herein, we report artificial homohelical assembly by blending inorganic polyoxometalates (POMs) and organic cyclodextrin molecules. The chiral double-helical chains have been achieved by a left-hand arrangement of trimer-trimer. The trimer is formed by three {Mo8}@α-CD inclusive complexes as a Whittaker-style paddle wheel. During the process of assembly, chiral transfer and amplification from molecule to superstructure were observed. The enantioselective adsorption of the homohelical aggregate toward (R/S)-1,1'-binaphthyl-2,2'-diamine was further demonstrated. The interaction of {Mo8} and α-CD in solution was investigated. This work opens a wide scope for the design of a homohelix, enriching POM-based inorganic-organic materials.

20.
Inorg Chem ; 62(41): 16913-16918, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37797212

ABSTRACT

CdE (E = S, Se) quantum dots (QDs) with a broad and large Stokes shift PL emission have emerged as potential materials for white-light LEDs. However, this surface-related emission of nanocrystals is currently limited by low quantum efficiency. Herein, a convenient noninjected one-pot method at a relatively low temperature to prepare CdS QDs was readily achieved. The CdS-368 QD displays intense broad yellow emission in both solution and the solid state at room temperature. The coligation of organic and inorganic ligands passivates the electron trap states at the QD surface and suppresses nonradiative recombination, which is responsible for the high stability of colloids in organic solvents and the distinct fluorescence quantum yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...