Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 882
Filter
1.
Biol Trace Elem Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831176

ABSTRACT

Arsenic is an environmental pollutant that has garnered considerable attention from the World Health Organization. Liver fibrosis is an advanced pathological stage of liver injury that can be caused by chronic arsenic exposure and has the potential to be reversed to prevent cirrhosis and hepatic malignancies. However, effective treatment options are currently limited. Given the profibrogenic effect of hepatocyte senescence, we established a rat model of sub-chronic sodium arsenite exposure and investigated the ability of resveratrol (RSV), a potential anti-senescence agent, to ameliorate arsenic-induced liver fibrosis and elucidate the underlying mechanism from the perspective of hepatocyte senescence. The results demonstrated that RSV was capable of mitigating fibrosis phenotypes in rat livers, including the activation of hepatic stellate cell (HSC), the generation of extracellular matrix, and the deposition of collagen fibers in the liver vascular zone, which are all induced by arsenic exposure. Furthermore, as an activator of the longevity factor SIRT1, RSV antagonized the arsenic-induced inhibition of SIRT1 expression, thereby restoring the suppression of the senescence protein p16 by SIRT1. This prevented arsenic-induced hepatocyte senescence, manifesting as a decrease in telomere shortening and a reduction in the release of senescence-associated secretory phenotype (SASP)-related proteins. In conclusion, this study demonstrated that RSV counteracts arsenic-induced hepatocyte senescence and the release of SASP-related proteins by restoring the inhibitory effect of SIRT1 on p16, thereby suppressing the activation of fibrotic phenotypes and mitigating liver fibrosis. These findings provide new insights for understanding the mechanism of arsenic-induced liver fibrosis, and more importantly, they reveal novel potential interventional approaches.

2.
PLoS One ; 19(6): e0304762, 2024.
Article in English | MEDLINE | ID: mdl-38829896

ABSTRACT

BACKGROUND: Cognitive impairment (CI) is common among patients with chronic kidney disease (CKD), and is associated with a poor prognosis. We assessed the prevalence and associated factors of CI in patients with CKD. METHODS: A systematic review and meta-analysis were conducted by searching PubMed, Embase, and the Web of Science through December 1, 2023. Random effects models were performed with subgroup analyses to further explore the heterogeneity. RESULTS: 50 studies involving 25,289 CKD patients were included. The overall prevalence of CI was 40% (95% confidence interval 33-46). The pooled prevalence of CI was relatively higher in CKD patients from Africa (58%), Asia (44%) and America (37%). Attention and executive dysfunction appeared to be the most common manifestations. The prevalence of CI was higher among patients with hemodialysis (53%) and peritoneal dialysis (39%) than those without dialysis (32%) and post-kidney transplanted (26%). In addition, advanced age, the presence of diabetes and hypertension might increase the risk of CI in CKD patients. CONCLUSIONS: People with CKD have a high prevalence of CI, especially in patients with hemodialysis. An early and comprehensive screening for CI in CKD patients is needed to improve clinical outcomes. TRIAL REGISTRATION: Registration number: PROSPERO (CRD42023412864).


Subject(s)
Cognitive Dysfunction , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/complications , Cognitive Dysfunction/epidemiology , Prevalence , Renal Dialysis , Risk Factors
3.
Sci Rep ; 14(1): 10329, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710751

ABSTRACT

In this study, we aimed to investigate the association between handgrip strength (HGS) and cognitive performance in stage 3-5 chronic kidney disease (CKD) patients aged ≥ 60 years. This cross-sectional study analyzed data from National Health and Nutrition Examination Survey (NHANES) database 2011-2014. Three tests were used to assess the cognitive performance, including consortium to establish a registry for Alzheimer's disease (CERAD), animal fluency test (AFT), and digit symbol substitution test (DSST). The multivariate linear regression analyses adjusting for confounding factors were utilized to evaluate the association of HGS with cognitive performance. A total of 678 older stage 3-5 CKD patients were included in this study. After adjusting for multiple factors, a higher HGS was positively associated with a higher CERAD-delayed recall and DSST score. In addition, our analysis indicated that HGS probably correlated with better performance of immediate learning ability in male, while working memory, sustained attention, and processing speed in female. HGS may be an important indicator for cognitive deficits in stage 3-5 CKD patients, especially for learning ability and executive function. Further research to explore the sex-specific and domain-specific and possible mechanisms are required.


Subject(s)
Cognition , Hand Strength , Nutrition Surveys , Renal Insufficiency, Chronic , Humans , Male , Female , Hand Strength/physiology , Aged , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/complications , Cognition/physiology , Cross-Sectional Studies , Middle Aged , Aged, 80 and over , Cognitive Dysfunction/physiopathology , Neuropsychological Tests
4.
Pharm Biol ; 62(1): 356-366, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38720666

ABSTRACT

CONTEXT: Yi-Shen-Hua-Shi (YSHS) is a traditional Chinese medicine that treats chronic kidney disease (CKD). However, its efficacy in reducing proteinuria and underlying mechanisms is unknown. OBJECTIVE: This single-center randomized controlled trial explored whether YSHS could improve proteinuria and modulate the gut microbiota. MATERIALS AND METHODS: 120 CKD patients were enrolled and randomized to receive the renin-angiotensin-aldosterone system (RAAS) inhibitor plus YSHS (n = 56) or RAAS inhibitor (n = 47) alone for 4 months, and 103 patients completed the study. We collected baseline and follow-up fecal samples and clinical outcomes from participants. Total bacterial DNA was extracted, and the fecal microbiome was analyzed using bioinformatics. RESULTS: Patients in the intervention group had a significantly higher decrease in 24-h proteinuria. After 4 months of the YSHS intervention, the relative abundance of bacteria that have beneficial effects on the body, such as Faecalibacterium, Lachnospiraceae, Lachnoclostridium, and Sutterella increased significantly, while pathogenic bacteria such as the Eggerthella and Clostridium innocuum group decreased. However, we could not find these changes in the control group. Redundancy analysis showed that the decline in 24-h proteinuria during follow-up was significantly correlated with various taxa of gut bacteria, such as Lachnospiraceae and the Lachnoclostridium genus in the YSHS group. KEGG analysis also showed the potential role of YSHS in regulating glycan, lipid, and vitamin metabolism. DISCUSSION AND CONCLUSION: The YSHS granule reduced proteinuria associated with mitigating intestinal microbiota dysbiosis in CKD patients. The definite mechanisms of YSHS to improve proteinuria need to be further explored. TRIAL REGISTRATION: ChiCTR2300076136, retrospectively registered.


Subject(s)
Drugs, Chinese Herbal , Dysbiosis , Gastrointestinal Microbiome , Proteinuria , Renal Insufficiency, Chronic , Humans , Gastrointestinal Microbiome/drug effects , Male , Female , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/drug therapy , Proteinuria/drug therapy , Proteinuria/microbiology , Middle Aged , Drugs, Chinese Herbal/pharmacology , Feces/microbiology , Aged , Adult , Medicine, Chinese Traditional/methods
5.
Kidney Int Rep ; 9(5): 1220-1227, 2024 May.
Article in English | MEDLINE | ID: mdl-38707815

ABSTRACT

Introduction: The approximately 70% 12-month relapse in children experiencing the initial episode of steroid-sensitive nephrotic syndrome (SSNS) is a significant concern, with over 50% developing frequent relapses or steroid-dependent nephrotic syndrome (FRNS/SDNS). There is a lack of strategies to reduce relapse after the onset. Whether early administration of rituximab, which effectively reduces relapses in FRNS/SDNS, may be a solution has not been evaluated. Methods: A prospective, multicenter, open-label, single-arm trial was conducted in China, with a 12-month follow-up. Children aged 1 to 18 years with the first episode of nephrotic syndrome (NS) were screened for eligibility. Proteinuria was evaluated daily using dipsticks. A dose of 375 mg/m2 of rituximab was intravenously infused within 1 week after achieving corticosteroid-induced remission. The main outcome was 12-month relapse-free survival. Results: Out of the initially 66 children screened, 44 were enrolled and received rituximab, with all but 1 participant completing the 12-month follow-up. The median age at diagnosis was 4.3 years (interquartile range [IQR]: 3.4-5.9), and 33 (77%) of the participants were male. In the rituximab group, the 12-month relapse-free survival was significantly higher compared to historical controls (32 of 43 [74.4%] vs. 10 of 33 [30.3%]; P < 0.001; hazard ratio [HR], 3.76; 95% confidence interval [CI], 1.80-7.81). The post hoc analysis revealed a higher 24-month relapse-free survival and a lower incidence of FRNS/SDNS at the 12-month follow-up. Treatment with rituximab was well-tolerated. Conclusion: Our findings support that early administration of rituximab may be associated with a higher 12-month relapse-free survival and a reduced incidence of FRNS/SDNS in children experiencing the initial episode of SSNS.

6.
Heliyon ; 10(10): e30414, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818170

ABSTRACT

Background: Postoperative delirium (POD) often occurs in elderly patients after surgery. We conducted two clinical studies to determine whether COVID-19 vaccination has a protective effect on POD and to explore the role of CSF biomarkers in this process. Methods: We conducted two clinical studies, Perioperative Neurocognitive Disorder Risk Factor and Prognosis (PNDRFAP) and Perioperative Neurocognitive Disorder and Biomarker Lifestyle (PNDABLE), in which patients more than or equal to 65 years old who have had elective non-cardiac surgery were enrolled. The preoperative cognitive status of patients were evaluated by Mini-Mental State Examination (MMSE) one day preoperatively. Confusion Assessment Method (CAM) was used to diagnose POD. We used the mediation model to analyze the relationship between CSF biomarkers, COVID-19 vaccination and POD, as well as Dynamic Nomogram to calculate the incidence of Non-Postoperative Delirium (NPOD). The main outcome of these studies was the incidence of POD during seven days postoperatively or before discharge, which was assessed by CAM. Results: In the final, 705 participants were enrolled in the PNDRFAP study, and 638 patients in the PNDABLE. In both studies, we found that the occurrence of POD was lower in patients who had injected COVID-19 vaccination before surgery compared with those without vaccination (PNDRFAP: 10.20 % [21/205] vs 25.80 % [129/500], P < 0.001; PNDABLE: 2.40 % [4/164] vs 34.60 % [164/474], P < 0.001). Mediation analysis showed that the protective effect of preoperative COVID-19 vaccine on POD was significantly mediated by CSF Aß42 (proportion = 17.56 %), T-tau (proportion = 19.64 %), Aß42/T-tau (proportion = 29.67 %), and Aß42/P-tau (proportion = 12.26 %). Conclusions: COVID-19 vaccine is a protective factor for POD in old patients, which is associated with CSF biomarkers.

7.
Brain Imaging Behav ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822207

ABSTRACT

Hemodialysis (HD) leads to cognitive impairment; however, the pathophysiology of maintenance HD remains unclear. This study aimed to investigate the longitudinal alterations in gray matter volume (GMV) and cerebral blood flow (CBF) in patients on HD at follow-up compared with baseline, examine the alterations in functional connectivity (FC) by defining co-changed brain regions as seed points, and investigate the correlation between the co-changed brain regions and neuropsychological test scores. Twenty-seven patients with HD and 30 healthy controls were enrolled in this study. All participants underwent high-resolution T1-weighted imaging, arterial spin labeling, and functional MR imaging to measure GMV, CBF, and FC. The patients on HD were assessed at baseline and 3 years subsequently. The right and left medial superior frontal gyrus (SFGmed.L) exhibited significantly lower GMV and CBF in patients on HD at follow-up compared with baseline and lower FC between the SFGmed.L and left middle temporal gyrus (MTG.L). FC between the SFGmed.L and MTG.L was positively correlated with neuropsychological test scores in the HD group at follow-up. Reduced GMV and CBF may result in decreased FC between the SFGmed.L and MTG.L, which may be associated with cognitive impairment in patients on maintenance HD. Our findings provide unique insights into the pathological mechanisms of patients on maintenance HD with cognitive impairment.

8.
Sci Rep ; 14(1): 12403, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38811765

ABSTRACT

This study aims to examine whether hypovitaminosis D was associated with cognitive impairment among chronic kidney patients with different level of albuminuria. This population-based cross-sectional study was conducted on elderly (over 60 years old) with urine albumin to creatinine ratio (UACR) ≥ 30 mg/g from 2011 to 2014 in the US National Health and Nutrition Examination Survey (NHANES). Cognitive function was assessed by the Consortium to Establish a Registry for Alzheimer's Disease Word List Learning (CERAD). Subjects were divided into 2 groups according to the absence or presence of cognitive impairment and a propensity score matching (PSM) was further conducted. The association was assessed with Spearman correlation and logistic regression analysis. The positive association of 25-hydroxyvitamin D3 (25(OH)D3) and cognitive score was presented. PSM analysis revealed that a higher level of 25(OH)D3 correlated to a better cognitive function in CKD patients with albuminuria, especially in patients with 30 mg/g ≤ UACR < 300 mg/g. This study indicated that a low 25(OH)D3 level was associated with poor cognitive performance, especially in patients with microalbuminuria. Thus, early diagnosis of vitamin D insufficiency and an effective intervention might be a useful therapeutic strategy to prevent cognitive decline in patients with the progression of renal dysfunction.


Subject(s)
Albuminuria , Calcifediol , Cognitive Dysfunction , Renal Insufficiency, Chronic , Vitamin D Deficiency , Humans , Female , Male , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Cognitive Dysfunction/blood , Cognitive Dysfunction/etiology , Aged , Cross-Sectional Studies , Calcifediol/blood , Middle Aged , Albuminuria/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Aged, 80 and over , Nutrition Surveys
9.
Clin Genet ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780184

ABSTRACT

Emerging research has demonstrated that genomic alterations disrupting topologically associated domains (TADs) and chromatin interactions underlie the pathogenic mechanisms of specific copy number variants (CNVs) in neurodevelopmental disorders. We report two patients with a de novo deletion and a duplication in chromosome 4q31, potentially causing FBX-related neurodevelopmental syndrome by affecting the regulatory region of FBXW7. High-throughput chromosome conformation capture (Hi-C) analysis using available capture data in neural progenitor cells revealed the rewiring of the TAD boundary close to FBXW7. Both patients exhibited facial dysmorphisms, cardiac and limb abnormalities, and neurodevelopmental delays, showing significant clinical overlap with previously reported FBXW7-related features. We also included an additional 10 patients with CNVs in the 4q31 region from the literature and the DECIPHER database for Hi-C analysis, which confirmed that disruption of the regulatory region of FBXW7 likely contributes to the developmental defects observed in these patients.

10.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733805

ABSTRACT

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Subject(s)
Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
11.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792060

ABSTRACT

As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.


Subject(s)
Biomarkers , Mass Spectrometry , Metabolomics , Metabolomics/methods , Humans , Biomarkers/metabolism , Mass Spectrometry/methods , Drug Discovery/methods , Metabolome , Animals
12.
Article in English | MEDLINE | ID: mdl-38798269

ABSTRACT

The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored ATP synthesis. Among the transcriptome sequencing data, the difference of CXCL5 was the most significant. Both high copper and ADR exposure can cause up-regulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.

13.
Shock ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38661181

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury (CIRI) have severe consequences on brain function, and the exciting evidence has revealed protective role of acyl-CoA synthetase long chain family member 4 (Lin28a) against cerebral ischemia-reperfusion injury. The present work aims to reveal its molecular mechanism in regulating CIRI, with the hope of providing a therapeutic method for cerebral I/R injury. We hypothesized that the exosomal nuclear factor erythroid 2-related factor 2 (NRF2) derived from bone marrow mesenchymal stromal cells (BMSCs) could transcriptionally activate Lin28a, and thereby alleviate cerebral ischemia-reperfusion injury. This hypothesis was validated in the present work. METHODS: Middle cerebral artery occlusion (MCAO) model was established using C57BL/6 J mice, and the neurological deficit, infarct volume, and brain water content were assessed to evaluate neuron injury. Human glioblastoma cells (A172) were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) treatment to mimic a cerebral I/R injury cell model. Exosome isolation reagent was used to isolate exosomes from cell supernatant of bone marrow mesenchymal stromal cells (BMSCs) through sequential centrifugation and filtration steps. mRNA expression level of Lin28a was detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blotting assay. TUNEL cell apoptosis detection kit was used to analyze cell apoptosis in brain tissues. Enzyme-linked immunosorbent assays and commercial kits were used to detect levels of inflammatory markers and oxidative stress markers. Ferrous Iron Colorimetric Assay Kit and Fe 2+ colorimetric assay kit were used to analyze Fe 2+ level. The association of Lin28a and NRF2 was identified by Chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter assay. RESULTS: The treatment of MCAO substantially augmented infarct volume in mice, impaired neurological function, and elevated brain water content. Lin28a was lowly expressed in brain tissues of mice with CIRI, and its overexpression protected against cerebral I/R injury of MCAO mice. Moreover, Lin28a overexpression protected A172 cells against OGD/R treatment-induced injury. Additionally, NRF2 transcriptionally activated Lin28a in A172 cells. BMSC-derived exosomes increased Lin28a expression in a NRF2-dependent manner. BMSC-derived exosomal NRF2 improved OGD/R-induced A172 cell injury by inducing Lin28a production. CONCLUSION: BMSC-derived exosomal NRF2 improved CIRI by transcriptionally activating Lin28a.

14.
Ecotoxicol Environ Saf ; 278: 116360, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38678690

ABSTRACT

Methylmercury (MeHg) is a neurotoxin associated with foetal neurodevelopmental and adult cognitive deficits. Neurons are highly dependent on the tricarboxylic acid cycle and oxidative phosphorylation to produce ATP and meet their high energy demands. Therefore, mitochondrial quality control (MQC) is critical for neuronal homeostasis. While existing studies have generated a wealth of data on the toxicity of MeHg, the complex cascades and molecular pathways governing the mitochondrial network remain to be elucidated. Here, 0.6, 1.2 and 2.4 mg/kg body weight of MeHg were administered intragastrically to pregnant Sprague Dawley rats to model maternal MeHg exposure. The results of the in vivo study revealed that MeHg-treated rats tended to perform more directionless repetitive strategies in the Morris Water Maze and fewer target-orientation strategies than control offspring. Moreover, pathological injury and synaptic toxicity were observed in the hippocampus. Transmission electron microscopy (TEM) demonstrated that the autophagosomes encapsulated damaged mitochondria, while showing a typical mitochondrial fission phenotype, which was supported by the activation of PINK1-dependent key regulators of mitophagy. Moreover, there was upregulation of DRP1 and FIS1. Additionally, MeHg compensation promoted mitochondrial biogenesis, as evidenced by the activation of the mitochondrial PGC1-α-NRF1-TFAM signalling pathway. Notably, SIRT3/AMPK was activated by MeHg, and the expression and activity of p-AMPK, p-LKB1 and SIRT3 were consistently coordinated. Collectively, these findings provide new insights into the potential molecular mechanisms regulating MeHg-induced cognitive deficits through SIRT3/AMPK MQC network coordination.


Subject(s)
Cognitive Dysfunction , Methylmercury Compounds , Mitochondria , Rats, Sprague-Dawley , Methylmercury Compounds/toxicity , Animals , Mitochondria/drug effects , Rats , Female , Cognitive Dysfunction/chemically induced , Pregnancy , Hippocampus/drug effects , Hippocampus/pathology , Maternal Exposure , Prenatal Exposure Delayed Effects/chemically induced
15.
Biomed J ; : 100730, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643825

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is a critical factor in the pathogenesis of acute kidney injury (AKI). Agents that ameliorate mitochondrial dysfunction hold potential for AKI treatment. The objective of this study was to investigate the impact of olesoxime, a novel mitochondrial-targeted agent, on cisplatin-induced AKI. METHODS: In vivo, a cisplatin-induced AKI mouse model was established by administering a single intraperitoneal dose of cisplatin (25 mg/kg) to male C57BL/6 mice for 72 hours, followed by gavage of either olesoxime or a control solution. In vitro, human proximal tubular HK2 cells were cultured and subjected to treatments with cisplatin, either in the presence or absence of olesoxime. RESULTS: In vivo, our findings demonstrated that olesoxime administration significantly mitigated the nephrotoxic effects of cisplatin in mice, as evidenced by reduced blood urea nitrogen (BUN) and serum creatinine (SCr) levels, improved renal histopathology, and decreased expression of renal tubular injury markers such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, olesoxime administration markedly reduced cisplatin-induced apoptosis, inflammation, and oxidative stress in the kidneys of AKI mice. Additionally, olesoxime treatment effectively restored mitochondrial function in the kidneys of AKI mice. In vitro, our results indicated that olesoxime treatment protected against cisplatin-induced apoptosis and mitochondrial dysfunction in cultured HK2 cells. Notably, cisplatin's anticancer effects were unaffected by olesoxime treatment in human cancer cells. CONCLUSION: The results of this study suggest that olesoxime is a viable and efficient therapeutic agent in the treatment of cisplatin-induced acute kidney injury presumably by alleviating mitochondrial dysfunction.

16.
Mar Drugs ; 22(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535479

ABSTRACT

Phycoerythrin and polysaccharides have significant commercial value in medicine, cosmetics, and food industries due to their excellent bioactive functions. To maximize the production of biomass, phycoerythrin, and polysaccharides in Porphyridium purpureum, culture media were supplemented with calcium gluconate (CG), magnesium gluconate (MG) and polypeptides (BT), and their optimal amounts were determined using the response surface methodology (RSM) based on three single-factor experiments. The optimal concentrations of CG, MG, and BT were determined to be 4, 12, and 2 g L-1, respectively. The RSM-based models indicated that biomass and phycoerythrin production were significantly affected only by MG and BT, respectively. However, polysaccharide production was significantly affected by the interactions between CG and BT and those between MG and BT, with no significant effect from BT alone. Using the optimized culture conditions, the maximum biomass (5.97 g L-1), phycoerythrin (102.95 mg L-1), and polysaccharide (1.42 g L-1) concentrations met and even surpassed the model-predicted maximums. After optimization, biomass, phycoerythrin, and polysaccharides concentrations increased by 132.3%, 27.97%, and 136.67%, respectively, compared to the control. Overall, this study establishes a strong foundation for the highly efficient production of phycoerythrin and polysaccharides using P. purpureum.


Subject(s)
Gluconates , Porphyridium , Phycoerythrin , Calcium Gluconate , Polysaccharides
17.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471343

ABSTRACT

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Subject(s)
Arsenic , Ginkgo Extract , Ginkgo biloba , Humans , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Arsenic/toxicity , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacology , Plant Extracts/analysis
18.
Sci Total Environ ; 923: 171398, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442753

ABSTRACT

Methylmercury (MeHg), as a global environmental pollutant, is of concern globally due to its neurodevelopmental toxicity. Mitochondria-associated membranes (MAMs) are highly dynamic sites of endoplasmic reticulum (ER)-haemocyte contact. MAMs are closely associated with the pathophysiology of neurological disorders due to their role in the transfer of calcium ions (Ca2+) between mitochondria and the ER. However, the molecular mechanisms that control these interactions in MeHg-induced neurotoxicity have not yet been characterized. In the current study, MeHg caused increases in the levels of both cytosolic and mitochondrial Ca2+ in PC12 cells and promoted MAMs formation in both in vivo and in vitro experiments. Of note, MeHg perturbed mitochondrial dynamics, promoting a shift toward a fission phenotype, and this was supported by the dysregulation of fission regulators. Interestingly, the MeHg-induced promotion of MAMs formation and increase in Ca2+ levels were effectively attenuated by the inhibition of mitochondrial fission using Mdivi-1, a DRP1 inhibitor. Furthermore, MeHg triggered the AMPK pathway, and most of the aforementioned changes were significantly rescued by Compound C. Mechanistic investigations revealed a reciprocal relationship between AMPK- and Ca2+-mediated mitochondrial fission. The specific inhibitor of Ca2+ uniporter, ruthenium-red (RuR), effectively abolished the feedback regulation of mitochondrial dynamics and MAMs formation mediated by AMPK in response to MeHg-induced Ca2+ overload. This study reveals a novel role of AMPK-DRP1-mediated mitochondrial fragmentation in the coupling of ER-mitochondrial calcium microdomains in MeHg-induced neurotoxicity. The findings provide valuable insights for the development of strategies to regulate mitochondrial imbalances in neurological diseases.


Subject(s)
Calcium , Methylmercury Compounds , Rats , Animals , Calcium/metabolism , Mitochondrial Dynamics , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , AMP-Activated Protein Kinases/metabolism , Mitochondria , Endoplasmic Reticulum/metabolism , Homeostasis
19.
Biochem Biophys Res Commun ; 709: 149807, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38552554

ABSTRACT

Minimal Change Disease (MCD), which is associated with podocyte injury, is the leading cause of nephrotic syndrome in children. A considerable number of patients experience relapses and require prolonged use of prednisone and immunosuppressants. Multi-drug resistance and frequent relapses can lead to disease progression to focal and segmental glomerulosclerosis (FSGS). To identify potential targets for therapy of podocyte injury, we examined microarray data of mRNAs in glomerular samples from both MCD patients and healthy donors, obtained from the GEO database. Differentially expressed genes (DEGs) were used to construct the protein-protein interactions (PPI) network through the application of the search tool for the retrieval of interacting genes (STRING) tool. The most connected genes in the network were ranked using cytoHubba. 16 hub genes were selected and validated by qRT-PCR. RAC2 was identified as a potential therapeutic target for further investigation. By downregulating RAC2, Adriamycin (ADR)-induced human podocytes (HPCs) injury was attenuated. EHT-1864, a small molecule inhibitor that targets the RAC (RAC1, RAC2, RAC3) family, proved to be more effective than RAC2 silencing in reducing HPCs injury. In conclusion, our research suggests that EHT-1864 may be a promising new molecular drug candidate for patients with MCD and FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Podocytes , Humans , Doxorubicin/adverse effects , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/drug therapy , Glomerulosclerosis, Focal Segmental/genetics , Kidney Glomerulus , Recurrence
20.
Am J Physiol Renal Physiol ; 326(5): F768-F779, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38450435

ABSTRACT

Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and the unfolded protein response, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the cross talk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondria-related clinical research.


Subject(s)
Kidney Diseases , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/pathology , Kidney Diseases/physiopathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Animals , Kidney/metabolism , Kidney/physiopathology , Kidney/pathology , Energy Metabolism , Autophagy , Mitochondrial Dynamics , Mitophagy , Unfolded Protein Response , Organelle Biogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...