Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658747

ABSTRACT

The cerebral cortex is composed of neuronal types with diverse gene expression that are organized into specialized cortical areas. These areas, each with characteristic cytoarchitecture1,2, connectivity3,4 and neuronal activity5,6, are wired into modular networks3,4,7. However, it remains unclear whether these spatial organizations are reflected in neuronal transcriptomic signatures and how such signatures are established in development. Here we used BARseq, a high-throughput in situ sequencing technique, to interrogate the expression of 104 cell-type marker genes in 10.3 million cells, including 4,194,658 cortical neurons over nine mouse forebrain hemispheres, at cellular resolution. De novo clustering of gene expression in single neurons revealed transcriptomic types consistent with previous single-cell RNA sequencing studies8,9. The composition of transcriptomic types is highly predictive of cortical area identity. Moreover, areas with similar compositions of transcriptomic types, which we defined as cortical modules, overlap with areas that are highly connected, suggesting that the same modular organization is reflected in both transcriptomic signatures and connectivity. To explore how the transcriptomic profiles of cortical neurons depend on development, we assessed cell-type distributions after neonatal binocular enucleation. Notably, binocular enucleation caused the shifting of the cell-type compositional profiles of visual areas towards neighbouring cortical areas within the same module, suggesting that peripheral inputs sharpen the distinct transcriptomic identities of areas within cortical modules. Enabled by the high throughput, low cost and reproducibility of BARseq, our study provides a proof of principle for the use of large-scale in situ sequencing to both reveal brain-wide molecular architecture and understand its development.

2.
Elife ; 122024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319699

ABSTRACT

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.


In the brain, messages are relayed from one cell to the next through intricate networks of axons and dendrites that physically interact at junctions known as synapses. Mapping out this synaptic connectivity ­ that is, exactly which neurons are connected via synapses ­ remains a major challenge. Monosynaptic tracing is a powerful approach that allows neuroscientists to explore neural networks by harnessing viruses which spread between neurons via synapses, in particular the rabies virus. This pathogen travels exclusively from 'postsynaptic' to 'presynaptic' neurons ­ from the cell that receives a message at a synapse, back to the one that sends it. A modified variant of the rabies virus can therefore be used to reveal the presynaptic cells connecting to a population of neurons in which it has been originally introduced. However, this method does not allow scientists to identify the exact postsynaptic neuron that each presynaptic cell is connected to. One way to bypass this issue is to combine monosynaptic tracing with RNA barcoding to create distinct versions of the modified rabies virus, which are then introduced into separate populations of neurons. Tracking the spread of each version allows neuroscientists to spot exactly which presynaptic cells signal to each postsynaptic neuron. So far, this approach has been used to examine synaptic connectivity in neurons grown in the laboratory, but it remains difficult to apply it to neurons in the brain. In response, Zhang, Jin et al. aimed to demonstrate how monosynaptic tracing that relies on barcoded rabies viruses could be used to dissect neural networks in the mouse brain. First, they confirmed that it was possible to accurately detect which version of the virus had spread to presynaptic neurons using both in situ and single-cell RNA sequencing. Next, they described how this information could be analysed to build models of potential neural networks, and what type of additional experiments are required for this work. Finally, they used the approach to identify neurons that tend to connect to the same postsynaptic cells and then investigated what these have in common, showing how the technique enables a finer understanding of neural circuits. Overall, the work by Zhang, Jin et al. provides a comprehensive review of the requirements and limitations associated with monosynaptic tracing experiments based on barcoded rabies viruses, as well as how the approach could be optimized in the future. This information will be of broad interest to scientists interested in mapping neural networks in the brain.


Subject(s)
Rabies virus , Animals , Mice , Rabies virus/genetics , Neuroanatomy , Neurons , Sequence Analysis, RNA , RNA
3.
Sensors (Basel) ; 23(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904835

ABSTRACT

This study proposed a separation method to identify the temperature-induced response from the long-term monitoring data with noise and other action-induced effects. In the proposed method, the original measured data are transformed using the local outlier factor (LOF), and the threshold of the LOF is determined by minimizing the variance of the modified data. The Savitzky-Golay convolution smoothing is also utilized to filter the noise of the modified data. Furthermore, this study proposes an optimization algorithm, namely the AOHHO, which hybridizes the Aquila Optimizer (AO) and the Harris Hawks Optimization (HHO) to identify the optimal value of the threshold of the LOF. The AOHHO employs the exploration ability of the AO and the exploitation ability of the HHO. Four benchmark functions illustrate that the proposed AOHHO owns a stronger search ability than the other four metaheuristic algorithms. A numerical example and in situ measured data are utilized to evaluate the performances of the proposed separation method. The results show that the separation accuracy of the proposed method is better than the wavelet-based method and is based on machine learning methods in different time windows. The maximum separation errors of the two methods are about 2.2 times and 5.1 times that of the proposed method, respectively.

4.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-36993334

ABSTRACT

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4,130 retrogradely labeled cells and 2,914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.

5.
J Zhejiang Univ Sci B ; 22(6): 512-520, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34128374

ABSTRACT

BACKGROUND: Previous studies have shown that macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of asthma. This study aimed to investigate whether serum MIF reflects a therapeutic response in allergic asthma. METHODS: We enrolled 30 asthmatic patients with mild-to-moderate exacerbations and 20 healthy controls, analyzing the parameter levels of serum MIF, serum total immunoglobulin E (tIgE), peripheral blood eosinophil percentage (EOS%), and fractional exhaled nitric oxide (FeNO). Lung function indices were used to identify disease severity and therapeutic response. RESULTS: Our study showed that all measured parameters in patients were at higher levels than those of controls. After one week of treatment, most parameter levels decreased significantly except for serum tIgE. Furthermore, we found that serum MIF positively correlated with EOS% as well as FeNO, but negatively correlated with lung function indices. Receiver operator characteristic (ROC) curve analysis indicated that among the parameters, serum MIF exhibited a higher capacity to evaluate therapeutic response. The area under the curve (AUC) of MIF was 0.931, with a sensitivity of 0.967 and a specificity of 0.800. CONCLUSIONS: Our results suggested that serum MIF may serve as a potential biomarker for evaluating therapeutic response in allergic asthma with mild-to-moderate exacerbations.


Subject(s)
Asthma/drug therapy , Macrophage Migration-Inhibitory Factors/blood , Adult , Aged , Asthma/blood , Asthma/physiopathology , Biomarkers/blood , Female , Fractional Exhaled Nitric Oxide Testing , Humans , Immunoglobulin E/blood , Lung/physiopathology , Male , Middle Aged
6.
Appl Opt ; 57(21): 6097-6101, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30118039

ABSTRACT

An interpolation computational ghost imaging (ICGI) method is proposed and demonstrated that is able to reduce the noise interference from a fluctuating source and background. The noise is estimated through periodic illuminations by a specific assay pattern during sampling, which is then used to correct the bucket detector signal. To validate this method simulations and experiments were conducted. Light source intensity and background lighting were randomly varied to modulate the noise. The results show that good quality images can be obtained, while with conventional computational ghost imaging (CGI) the reconstructed object is barely recognizable. The ICGI method offers a general approach applicable to all CGI techniques, which can attenuate the interference from source fluctuations, background light noise, dynamic scattering, and so on.

7.
J Biomater Sci Polym Ed ; 28(16): 1874-1887, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28693380

ABSTRACT

To improve the bioavailability of ibuprofen (IBU), we developed a novel binary complex of poly(PEGMA-co-MAA) hydrogel and IBU-loaded PLGA nanoparticles (IBU-PLGA NPs@hydrogels) as an oral intestinal targeting drug delivery system (OIDDS). The IBU-loaded PLGA NPs and pH-sensitive hydrogels were obtained via the solvent evaporation method and radical polymerization, respectively. The final OIDDS was obtained by immersing the hydrogel chips in the IBU-loaded PLGA NPs solutions (pH 7.4) for 3 d. The size distribution and morphology of cargo-free NPs were studied by laser granularity analyzer and transmission electron microscope (TEM). The inner structures of the pH-sensitive hydrogel chips were observed with an S-4800 scanning electron microscope (SEM). The distribution states of IBU in the OIDDS were also studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC). TEM photographs illustrated that the PLGA NPs had a round shape with an average diameter about 100 nm. Fourier transform infrared spectrum (FTIR) confirmed the synthesis of poly(PEGMA-co-MAA) hydrogel. The SEM picture showed that the final hydrogel had 3D net-work structures. Moreover, the poly(PEGMA-co-MAA) hydrogel showed an excellent pH-sensitivity. The XRD and DSC curves suggested that IBU distributed in the OIDDS with an amorphous state. The cumulated release profiles indicated that the final OIDDS could release IBU in alkaline environment (e.g. intestinal tract) at a sustained manner. Therefore, the novel OIDDS could improve the oral bioavailability of IBU, and had a potential application in drug delivery.


Subject(s)
Ibuprofen/administration & dosage , Ibuprofen/chemistry , Lactic Acid/chemistry , Methacrylates/administration & dosage , Methacrylates/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , 3T3 Cells , Administration, Oral , Animals , Cell Survival/drug effects , Hep G2 Cells , Humans , Ibuprofen/toxicity , Methacrylates/toxicity , Mice , Polyethylene Glycols/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer
8.
J Am Chem Soc ; 124(45): 13384-5, 2002 Nov 13.
Article in English | MEDLINE | ID: mdl-12418881

ABSTRACT

tert-Butylperoxy radicals generated by TBHP and Ru(PPh3)3Cl2 or other catalysts adds to C60 and C70 to form stable multiadducts, C60(O)(OOtBu)4 and C70(OOtBu)10. The four tert-butylperoxy groups in the C60 mixed peroxide are located around a pentagon, and the epoxy O occupies the remaining 6,6-bond connected to the same pentagon. The C70 decaadduct shows an unprecedented C2 symmetry with the 10 tert-butylperoxy groups added around the central part of C70 by consecutive 1,4-addition. The compounds are fully characterized by spectroscopic data.


Subject(s)
Fullerenes/chemistry , Peroxides/chemical synthesis , tert-Butylhydroperoxide/chemistry , Magnetic Resonance Spectroscopy , Molecular Mimicry , Oxidation-Reduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...