Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Shoulder Elbow Surg ; 29(9): 1892-1900, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32299772

ABSTRACT

BACKGROUND: The aim of this study was to investigate the influence of autologous bursal tissue derived from the Achilles bursa on tendon-to-bone healing after rotator cuff tear repair in a rat model. METHODS: A total of 136 Sprague-Dawley rats were randomly assigned to either an untreated or a bursal tissue application group or biomechanical testing and histologic testing after rotator cuff repair. After separating the supraspinatus tendon close to the greater tuberosity, the tendon was reattached either unaltered or with a bursal tissue interposition sewn onto the interface. Immunohistologic analysis was performed 1 and 7 weeks after supraspinatus tendon reinsertion. Biomechanical testing of the tendon occurred 6 and 7 weeks after reinsertion. RESULTS: Immunohistologic results demonstrated a significantly higher percentage of Type II collagen (P = .04) after 1 and 7 weeks in the tendon-to-bone interface using autologous bursal tissue in comparison to control specimens. The bursa group showed a significantly higher collagen I to III quotient (P = .03) at 1 week after surgery in comparison to the 7-week postsurgery bursa groups and controls. Biomechanical assessment showed that overall tendon stiffness (P = .002) and the tendon viscoelasticity in the bursa group (P = .003) was significantly improved after 6 and 7 weeks. There was no significant difference (P = .55) in force to failure between the bursa group and the control group after 6 and 7 weeks. CONCLUSION: Autologous bursal tissue derived from the Achilles bursa and implanted to the tendon-to-bone interface after rotator cuff repair facilitates a faster healing response to re-establish the biologic and biomechanical integrity of the rotator cuff in rats.


Subject(s)
Achilles Tendon/transplantation , Bursa, Synovial/surgery , Rotator Cuff Injuries/surgery , Synovial Membrane/transplantation , Animals , Biomechanical Phenomena , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Models, Animal , Random Allocation , Rats, Sprague-Dawley , Transplantation, Autologous
2.
Arthroscopy ; 33(4): 840-848, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28089496

ABSTRACT

PURPOSE: To analyze the ability of ropivacaine, bupivacaine, and triamcinolone to induce apoptosis and necrosis in fibroblasts, tenocytes, and human mesenchymal stem cells. METHODS: Human dermal fibroblasts, adipose-derived human mesenchymal stem cells (hMSCs), and tenocytes gained from the rotator cuff tendon were seeded with a cell density of 0.5 × 104/cm2. One specimen of ropivacaine, bupivacaine, and triamcinolone was tested separately on the cells with separate concentrations of 0.5%, 0.25%, and 0.125% for each specimen. The negative control received no agent, only a change of medium. The incubation period for each agent was 30 minutes. After a change of medium and 1 hour, 24 hours, and 7 days of incubation, 104 cells were harvested and analyzed via fluorescence-activated cell sorting with double-staining with annexin V and propidium iodide. Statistical analysis to determine significant difference (P < .05) between the groups with SPSS statistics 23 through one-way analysis of variance with a univariate general linear model was performed. RESULTS: Bupivacaine showed necrosis-inducing effects on fibroblasts and tenocytes, with the necrotic effect peaking at 0.5% and 0.25%. Ropivacaine and triamcinolone caused no significant necrosis. Compared with fibroblasts and tenocytes, hMSCs did not show significant necrotic or apoptotic effects after exposure to bupivacaine. Overall, no significant differences in apoptosis were detected between different cell lines, varying concentrations, or time measurements. CONCLUSIONS: Bupivacaine 0.5% and 0.25% have the most necrosis-inducing effects on fibroblasts and tenocytes. Ropivacaine caused less necrosis than bupivaine. Compared with fibroblasts and tenocytes, hMSCs were not affected by necrosis using any of the tested agents. A significant apoptosis-inducing effect could not be detected for the different cell lines. CLINICAL RELEVANCE: Possible cell toxicity raises questions of concern for intra-articular injections using local anesthetics and corticosteroids. The present study demonstrates the necrotic and apoptotic effects of ropivacaine, bupivacaine, and triamcinolone and may give recommendations for intra-articular use of local anesthetics and corticosteroids.


Subject(s)
Amides/toxicity , Bupivacaine/toxicity , Fibroblasts/drug effects , Mesenchymal Stem Cells/drug effects , Tenocytes/drug effects , Triamcinolone/toxicity , Adult , Amides/administration & dosage , Anesthetics, Local/pharmacology , Apoptosis/drug effects , Bupivacaine/administration & dosage , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/pathology , Flow Cytometry , Glucocorticoids/administration & dosage , Glucocorticoids/toxicity , Humans , Mesenchymal Stem Cells/pathology , Necrosis , Ropivacaine , Rotator Cuff/cytology , Skin/cytology , Tenocytes/pathology , Triamcinolone/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...