Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164736, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37295516

ABSTRACT

Amplification of hydrological cycle under warming climate is anticipated to result in intensified precipitation characterized by fewer, more intense events and correspondingly longer dry intervals between events, even without major changes in annual total precipitation. Vegetation gross primary production (GPP) in drylands is highly responsive to intensified precipitation, however, how intensified precipitation influences GPP in global drylands is not well understood. Based on multiple satellite datasets from 2001 to 2020 and in-situ measurements, we investigated the effects of intensified precipitation on global drylands GPP under diverse annual total precipitation along the bioclimate gradient. Dry, normal, and wet years were identified as years with annual precipitation anomalies below, within, and above the range of one standard deviation. Intensified precipitation led to increases or decreases of GPP during dry or normal years, respectively. However, such effects were largely weakened during wet years. The responses of GPP to intensified precipitation were mirrored by soil water availability, as intensified precipitation enhanced root zone soil moisture, and thus vegetation transpiration and precipitation use efficiency during dry years. During wet years, root zone soil moisture showed less response to changed precipitation intensity. Land cover types and soil texture regulated the magnitude of the effects along the bioclimate gradient. Under intensified precipitation, shrubland and grassland distributed in drier region with coarse soil texture showed greater increases of GPP during dry years. As global precipitation will likely further intensify, the impacts of intensified precipitation on dryland carbon uptake capacity will be highly diverse along the bioclimate gradients.


Subject(s)
Climate , Soil , Climate Change , Ecosystem
2.
Sci Total Environ ; 842: 156949, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35753467

ABSTRACT

Southeast Asia is one of the largest biomass burning (BB) source regions in the world. In order to promote our understanding of BB aerosol characteristics and environmental impacts, this study investigated the emission, composition, evolution, radiative effects, and feedbacks of BB aerosols from Mainland Southeast Asia during 15 March to 15 April 2019 by using an online-coupled regional chemistry/aerosol-climate model RIEMS-Chem. Model results are compared against a variety of ground and vertical observations, indicating a generally good model performance for meteorology, aerosol chemical compositions, and aerosol optical properties. It is found that BB aerosols contributed significantly to regional particulate matter (PM), accounting for up to 90 % of the near-surface PM2.5, BC, and OC concentrations over the BB source regions of north Mainland Southeast Asia and for approximately 30-70 % over wide downwind areas including most areas of southwest China and portions of south China. At the top of atmosphere (TOA), BB aerosols exerted a positive all-sky radiative effect (DREBB) up to 25 W/m2 over north Vietnam and south China, a negative DREBB up to -10 W/m2 over Myanmar, western Thailand, and southwest China. Meanwhile, the indirect radiative effect (IREBB) was consistently negative, with the maximum of -10 W/m2 over downwind areas with cloud coverage, e.g., from north Vietnam to most of south China. The subregional (95-125°E and 10-30°N) and period mean DREBB and IREBB at TOA were estimated to be 0.69 W/m2 and - 0.63 W/m2, respectively, leading a total radiative effect (TREBB) of 0.06 W/m2 at TOA. The radiative effects of BB aerosols led to decreases in sensible and latent heat fluxes, near-surface temperature, PBL height, and wind speed of 6.0 Wm-2, 9.0 Wm-2, 0.26 °C, 38.7 m, and 0.1 m/s, respectively, accompanied with an increase in RH of 1.9 %, averaged over the subregion and the study period. The accumulated precipitation during the study period was apparently reduced by BB aerosols from east Thailand to south China, with the maximum reduction up to 14 cm (exceeding 40 %) over north Vietnam and south China. TREBB tended to increase mean near-surface PM2.5 and its component concentrations, with the maximum percentage increase up to 24 % over the BB source regions of north Mainland Southeast Asia, resulting from the combined effects of dynamic and chemical feedbacks. DREBB generally dominated over IREBB in the feedback-induced PM2.5 concentration changes.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Asia, Southeastern , Biomass , China , Environmental Monitoring/methods , Feedback , Particulate Matter/analysis , Seasons
3.
Oncol Lett ; 20(5): 214, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32963620

ABSTRACT

The underlying causes of esophageal cancer (EC) are unknown. To explore the molecular mechanisms that lead to EC, gene expression profiles of large cohorts of patients with EC were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus (GEO) databases (GSE5364, GSE20347 and GSE23400). The present study identified 83 upregulated and 22 downregulated genes between EC and normal tissue using R statistical software and the GEO2R web tool. The Database for Annotation, Visualization and Integrated Discovery was used to identify the associated pathways, and for functional annotation of the differentially expressed genes (DEGs). Protein-protein interactions of these DEGs were analyzed based on the Search Tool for the Retrieval of Interacting Genes database, and hub genes were visualized using Cytoscape software. An online Kaplan-Meier plotter survival analysis tool was utilized to evaluate the prognostic value of hub gene expression in patients with EC. Further analysis of an additional dataset from GEO (GSE21293) revealed that these genes were associated with infiltration and metastasis in EC. In addition, the Gene Expression Profiling Interactive Analysis tool was used to evaluate expression levels of hub genes in patients with EC for different pathological stages. The Ualcan analysis tool was used to evaluate the expression levels of hub genes for different histological types. Overall, ubiquitin conjugating enzyme E2 C, cyclin dependent kinase inhibitor 3, CDC28 protein kinase regulatory subunit 2, kinesin family member 20A (KIF20A) and RAD51 associated protein 1 (RAD51AP1) were upregulated in EC tissues compared with normal tissues, and upregulation of these genes was a poor prognostic factor for patients with EC, indicating that these genes may mediate EC cell infiltration and metastasis. Among the hub genes, KIF-20A had potential value for predicting the pathological stage of EC. KIF20A and RAD51AP1 were more informative biomarkers of esophageal squamous cell carcinoma. Further studies are required to explore the value of these genes in the treatment of EC.

4.
PeerJ ; 7: e8182, 2019.
Article in English | MEDLINE | ID: mdl-31824776

ABSTRACT

Vascular endothelial growth factor (VEGF) and Matrix metalloproteinases (MMPs) are believed to participate in infiltration of tumors. High mortality of esophageal squamous cell carcinoma (ESCC) related to its primary infiltration; however, it is not clear whether the expression of VEGF and MMPs is involved in this process. Screening of The Cancer Genome Atlas (TCGA) database showed that among the VEGF family and MMP9, VEGF-A, VEGF-C, and MMP-9 mRNA were overexpression in ESCC. This result was verified using the Oncomine database and in Kazakh patients with ESCC. Overexpression of VEGF-C and MMP-9 and positive association with advanced esophageal cancer and invading ESCC cells (Gene Expression Omnibus (GEO): GSE21293). Immunohistochemical staining revealed that VEGF-C and MMP-9 were overexpressed in Kazakh ESCCs. VEGF-C expression was related to invasive depth, tumor-node-metastasis (TNM) staging, lymphatic, and lymph node metastasis of ESCC. The linear association between them was further confirmed in TCGA database and the specimens from Kazakh patients with ESCC. Patients with both proteins expression had tumors with greater aggressiveness, suffered from poor prognosis compared with patients who did not express either protein or expressed protein alone. Both proteins expression predicted high invasiveness of ESCC, which is related to worse prognosis of Kazakh ESCCs.

5.
Sci Total Environ ; 668: 1128-1138, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31018453

ABSTRACT

Semiarid regions have substantial interannual variation in carbon exchange between terrestrial ecosystem and atmosphere but the diverse responses of carbon fluxes to climate variability are poorly known. We compared carbon exchange processes and the responses to environmental factors in a meadow steppe at Tongyu (TY) and a typical steppe at Maodeng (MD) using long-term continuous eddy covariance measurements. TY precipitation was 25% greater than MD. Both grasslands had interannual fluctuations of carbon sink and source and acted as weak carbon sinks averagely (-22.9 ±â€¯41.0 gCm-2 yr-1 for TY and - 11.8 ±â€¯45.0 gCm-2 yr-1 for MD). The seasonal dynamics of carbon fluxes were significantly related to water availability at MD but more strongly related to air temperature at TY. During dry years, the controlling effect of water availability on carbon fluxes increased. Summer precipitation and soil moisture played key roles in the interannual variations in carbon fluxes in both grasslands. At MD, net carbon uptake was negatively related to summer air temperature likely because warming induced water deficit decreased photosynthesis. Greenness index derived from PhenoCam images captured key phenological phases and diverse magnitude of canopy dynamics. The index was correlated with seasonal and annual variations in carbon fluxes at both grasslands, suggesting the potential of PhenoCam for monitoring the spatial and temporal variations in canopy dynamics in different semiarid grasslands.


Subject(s)
Carbon/analysis , Grassland , Poaceae/metabolism , Seasons , Carbon/metabolism , Environmental Monitoring , Mongolia , Regression Analysis
6.
Sci Rep ; 7: 42281, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181570

ABSTRACT

Semi-arid ecosystems are key contributors to the global carbon cycle and may even dominate the inter-annual variability (IAV) and trends of the land carbon sink, driven largely by the El Niño-Southern Oscillation (ENSO). The linkages between dynamics of semi-arid ecosystems and climate at the hemispheric scale however are not well known. Here, we use satellite data and climate observations from 2000 to 2014 to explore the impacts of ENSO on variability of semi-arid ecosystems, using the Ensemble Empirical Mode Decomposition method. We show that the responses of semi-arid vegetation to ENSO occur in opposite directions, resulting from opposing controls of ENSO on precipitation between the Northern Hemisphere (positively correlated to ENSO) and the Southern Hemisphere (negatively correlated to ENSO). Also, the Southern Hemisphere, with a robust negative coupling of temperature and precipitation anomalies, exhibits stronger and faster responses of semi-arid ecosystems to ENSO than the Northern Hemisphere. Our findings suggest that natural coherent variability in semi-arid ecosystem productivity responded to ENSO in opposite ways between two hemispheres, which may imply potential prediction of global semi-arid ecosystem variability, particularly based on variability in tropical Pacific Sea Surface Temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...