Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (205)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38497625

ABSTRACT

In order to preliminarily explore the effects of Desmodium caudatum on gastritis and intestinal flora in rats, a chronic gastritis rat model was established using the classic sodium salicylate method. Eighteen SPF rats were divided into three groups: the control group (Group C), the model group (Group M), and the treatment group (Group T). Pathological sections of the gastric wall were taken from rats in each group. Furthermore, the concentrations of gastrin and malondialdehyde in the serum of rats in each group were determined by ELISA. Additionally, the effects of D. caudatum on the intestinal flora of rats with gastritis were explored through a detailed comparison of gut bacterial communities in the three groups, employing Illumina-based 16S rRNA gene sequencing. The results indicated that D. caudatum decoction could reduce the malondialdehyde content and increase the gastrin content. Moreover, D. caudatum decoction was found to enhance the diversity and abundance of intestinal flora, exerting a positive impact on the treatment of gastritis by regulating and restoring the intestinal flora.


Subject(s)
Gastritis , Gastrointestinal Hormones , Gastrointestinal Microbiome , Animals , Rats , Gastrins , RNA, Ribosomal, 16S , Gastritis/drug therapy , Malondialdehyde
2.
Proteome Sci ; 21(1): 5, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061727

ABSTRACT

OBJECTIVE: This study aims to explore the effect of an extract of Atractylodes lancea (A. lancea) on antibiotics-induced intestinal tract disorder and the probable therapeutic mechanisms employed by this extract to ameliorate these disorders. METHODS: Three days after acclimatization, nine male and nine female specific-pathogen-free (SPF) mice were randomly assigned into three groups: Group C (normal saline), Group M (antibiotic: cefradine + gentamicin), and Group T (antibiotic + A. lancea extract). Each mouse in Groups M and T received intragastric (i.g.) gavage antibiotics containing cefradine and gentamicin sulfate (0.02 ml/g-1/D-1) for 7 days. A. lancea extract (0.02 ml/g-1/D-1) was administered by i.g. gavage to Group T mice for 7 days following the cessation of antibiotic therapy. Group M received an equivalent volume of normal saline for 7 days, while Group C received an equivalent volume of normal saline for 14 days. Afterwards, we collected mouse feces to assess changes in intestinal microbiota by 16S ribosomal ribonucleic acid (rRNA) sequencing and metabolomics. In addition, serum samples were gathered and analyzed using liquid chromatography-mass spectrometry (LS-MS). Finally, we performed a correlation analysis between intestinal microbiota and metabolites. RESULTS: After treatment with antibiotic, the richness and diversity of the flora, numbers of wall-breaking bacteria and Bacteroidetes, and the numbers of beneficial bacteria decreased, while the numbers of harmful bacteria increased. After i.g. administration of A. lancea extract, the imbalance of microbial flora began to recover. Antibiotics primarily influence the metabolism of lipids, steroids, peptides, organic acids, and carbohydrates, with lipid compounds ranking first. Arachidonic acid (AA), arginine, and proline have relatively strong effects on the metabolisms of antibiotic-stressed mice. Our findings revealed that A. lancea extract might restore the metabolism of AA and L-methionine. The content of differential metabolites detected in the serum of Group T mice was comparable to that in the serum of Group C mice, but significantly different from that of Group M mice. Compared to putative biomarkers in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, it was found that altered metabolites, such as amino acids, glycerol, and phospholipids, were primarily associated with the metabolism. CONCLUSIONS: The effective mechanisms of A. lancea extract in regulating the disorder of intestinal flora in mice are related to the mechanisms of A. lancea. It could relate to lipid metabolism, bile acid metabolism, and amino acid metabolism. These results will provide a basis for further explaining the mechanism by which A. lancea regulats intestinal flora.

3.
ACS Appl Mater Interfaces ; 10(46): 40302-40316, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30365882

ABSTRACT

The work presented here aims to fabricate dual-purpose adsorbent with adsorption selectivity for Hg(II) and antibacterial activity. TSC-PGMA-MACS microspheres were first constructed via esterification of malic acid (MA) with chitosan (CS) and through successively grafting glycidyl methacrylate (GMA) and thiosemicarbazide (TSC) onto MACS microsphere surfaces. Fourier transform infrared spectroscopy, elemental analysis, energy-dispersive X-ray spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetry, differential thermogravimetry, scanning electron microscopy, and Brunauer-Emmett-Teller results provided ample evidence that new mesoporous adsorbent, with 35.340 m2 g-1 of specific surface area and abundant -NH2 and C═S, was successfully fabricated and had loose crystalline, thermodynamically stable, and well-defined architectures, beneficial for Hg(II) adsorption and bacterial cell killing. Optimal adsorption parameters were determined via varying pH, time, concentrations, and temperatures, and pH 6.0 was chosen as an optimal pH for Hg(II) adsorption. Adsorption behavior, described well by pseudo-second-order kinetic and Langmuir isotherm models, and thermodynamic parameters implied a chemical, monolayer, endothermic, and spontaneous adsorption process, and the maximum adsorption capacity for Hg(II) was 242.7 mg g-1, higher than most of the available adsorbents. Competitive adsorption exhibited excellent adsorption selectivity for Hg(II) in binary-metal solutions. Besides, TSC-PGMA-MACS microspheres had outstanding reusability even after five times recycling, with adsorption capability loss <14%. Several potential adsorption sites and bonding modes were proposed. Notably, TSC-PGMA-MACS microspheres before and after adsorption were of high antibacterial activity against Escherichia coli and Staphylococcus aureus (MICs, 2 and 0.25 mg mL-1), superior to CS powders, and possible antibacterial mechanisms were also summarized. Altogether, dual-purpose TSC-PGMA-MACS microspheres might be promising adsorbent for contaminated water scavenging.

SELECTION OF CITATIONS
SEARCH DETAIL
...