Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980167

ABSTRACT

Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.

2.
Cancers (Basel) ; 16(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611076

ABSTRACT

Cancer cells undergo a significant level of "metabolic reprogramming" or "remodeling" to ensure an adequate supply of ATP and "building blocks" for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I. Furthermore, DBI-1 and a glucose transporter 1 (GLUT1) inhibitor, BAY-876, synergistically inhibited CRC cell growth in vitro and in vivo. We now report a study of the structure-activity relationships (SARs) in the isoflavonoid family in which we identified a new DBI-1 analog, namely, DBI-2, with promising properties. Here, we aimed to explore the antitumor mechanisms of DBIs and to develop new combination strategies by targeting both glycolysis and OXPHOS. We identified DBI-2 as a novel AMPK activator using an AMPK phosphorylation assay as a readout. DBI-2 inhibited mitochondrial complex I in the Seahorse assays. We performed proliferation and Western blotting assays and conducted studies of apoptosis, necrosis, and autophagy to corroborate the synergistic effects of DBI-2 and BAY-876 on CRC cells in vitro. We hypothesized that restricting the carbohydrate uptake with a KD would mimic the effects of GLUT1 inhibitors, and we found that a ketogenic diet significantly enhanced the therapeutic efficacy of DBI-2 in CRC xenograft mouse models, an outcome that suggested a potentially new approach for combination cancer therapy.

3.
Ultrason Sonochem ; 101: 106686, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956511

ABSTRACT

Non-invasive ultrasound neuromodulation (USNM) is a powerful tool to explore neural circuits and treat neurological disorders. Due to the heterogeneity of the skull and regional variations in modulation and treatment objectives, it is necessary to develop an efficient and spatially controllable neuromodulation approach. Recently, transcranial focused ultrasound (tFUS) combined with external biomicro/nanomaterials for brain stimulation has garnered significant attention. This study focused on tFUS combined with perfluoropentane (PFP) nanodroplets (NDs) to improve the efficacy and spatial controllability of USNM. The developed two-stage variable pulse tFUS sequence that include the acoustic droplet vaporization (ADV) pulse for vaporizing PFP NDs into microbubbles (MBs) and the USNM sequence for inducing mechanical oscillations of the formed MBs to enhance neuronal activity. Further, adjusting the acoustic pressure of the ADV pulse generated the controllable vaporization regions, thereby achieving spatially controllable neuromodulation. The results showed that the mean densities of c-fos+ cells expression in the group of PFP NDs with ADV (109 ± 19 cells/mm2) were significantly higher compared to the group without ADV (37.34 ± 8.24 cells/mm2). The acoustic pressure of the ADV pulse with 1.98 MPa and 2.81 MPa in vitro generated the vaporization regions of 0.146 ± 0.032 cm2 and 0.349 ± 0.056 cm2, respectively. Under the same stimulation conditions, a larger vaporization region was also obtained with higher acoustic pressure in vivo, inducing a broader region of neuronal activation. Therefore, this study will serve as a valuable reference for developing the efficient and spatially controllable tFUS neuromodulation strategy.


Subject(s)
Acoustics , Nanostructures , Ultrasonography , Volatilization , Skull
4.
J Immunol Res ; 2022: 5882136, 2022.
Article in English | MEDLINE | ID: mdl-36313178

ABSTRACT

Targeting dendritic cells (DCs) metabolism-related pathways and in-situ activation of DCs have become a new trend in DC-based immunotherapy. Studies have shown that Lycium barbarum polysaccharide can promote DCs function. This study is aimed at exploring the mechanism of LBP affecting DCs function from the perspective of metabolomics. MTT method was used to detect the activity of DC2.4 cells. ELISA kit method was used to detect the contents of IL-6, IL-12, and TNF-α in the supernatant of cells. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to detect general changes in DC2.4 cell metabolism. And then multidistance covariates and bioinformatics, partial least squares-discriminant analysis (PLS-DA) were used to analyze differential metabolites. Finally, metabolic pathway analysis was performed by MetaboAnalyst v5.0. The results showed that LBP had no significant inhibitory effect on the activity of DC2.4 cells at the experimental dose of 50-200 µg/ml. LBP (100 µg/ml) could significantly stimulate DC2.4 cells to secrete IL-6, TNF-α, and IL-12. Moreover, 20 differential metabolites could be identified, including betaine, hypoxanthine, L-carnitine, 5'-methylthioadenosine, orotic acid, sphingomyelin, and L-glutamine. These metabolites were involved 28 metabolic pathways and the top 5 metabolic pathways were aspartate metabolism, pyrimidine metabolism, phenylacetate metabolism, methionine metabolism, and fatty acid metabolism. These results suggest that the effect of LBP on DCs function is related to the regulation of cell metabolism.


Subject(s)
Lycium , Lycium/chemistry , Tumor Necrosis Factor-alpha , Interleukin-6 , Polysaccharides/pharmacology , Dendritic Cells , Interleukin-12
5.
Front Pharmacol ; 13: 961154, 2022.
Article in English | MEDLINE | ID: mdl-36091808

ABSTRACT

Background: Due to the constant mutation of virus and the lack of specific therapeutic drugs, the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a huge threat to the health of people, especially those with underlying diseases. Therefore, drug discovery against the SARS-CoV-2 remains of great significance. Methods: With the main protease of virus as the inhibitor target, 9,614 genistein derivatives were virtually screened by LeDock and AutoDock Vina, and the top 20 compounds with highest normalized scores were obtained. Molecular dynamics simulations were carried out for studying interactions between these 20 compounds and the target protein. The drug-like properties, activity, and ADMET of these compounds were also evaluated by DruLiTo software or online server. Results: Twenty compounds, including compound 11, were screened by normalized molecular docking, which could bind to the target through multiple non-bonding interactions. Molecular dynamics simulation results showed that compounds 2, 4, 5, 11, 13, 14, 17, and 18 had the best binding force with the target protein of SARS-CoV-2, and the absolute values of binding free energies all exceeded 50 kJ/mol. The drug-likeness properties indicated that a variety of compounds including compound 11 were worthy of further study. The results of bioactivity score prediction found that compounds 11 and 12 had high inhibitory activities against protease, which indicated that these two compounds had the potential to be further developed as COVID-19 inhibitors. Finally, compound 11 showed excellent predictive ADMET properties including high absorption and low toxicity. Conclusion: These in silico work results show that the preferred compound 11 (ZINC000111282222), which exhibited strong binding to SARS-CoV-2 main protease, acceptable drug-like properties, protease inhibitory activity and ADMET properties, has great promise for further research as a potential therapeutic agent against COVID-19.

6.
Mol Cancer Ther ; 21(5): 740-750, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35247917

ABSTRACT

Cancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e., the Warburg effect). Glucose transporter 1 (GLUT1) expression is significantly increased in colorectal cancer cells, and GLUT1 inhibitors block glucose uptake and hence glycolysis crucial for cancer cell growth. In addition to ATP, these metabolic pathways also provide macromolecule building blocks and signaling molecules required for tumor growth. In this study, we identify a diaminobutoxy-substituted isoflavonoid (DBI-1) that inhibits mitochondrial complex I and deprives rapidly growing cancer cells of energy needed for growth. DBI-1 and the GLUT1 inhibitor, BAY-876, synergistically inhibit colorectal cancer cell growth in vitro and in vivo. This study suggests that an electron transport chain inhibitor (i.e., DBI-1) and a glucose transport inhibitor, (i.e., BAY-876) are potentially effective combination for colorectal cancer treatment.


Subject(s)
Colonic Neoplasms , Humans , Adenosine Triphosphate , Cell Line, Tumor , Cell Transformation, Neoplastic , Colonic Neoplasms/drug therapy , Glucose , Glucose Transporter Type 1/genetics , Glycolysis , Pyrazoles , Quinolines , Transcription Factors
7.
Metab Brain Dis ; 37(4): 1015-1023, 2022 04.
Article in English | MEDLINE | ID: mdl-35098413

ABSTRACT

Circular RNA circSLC8A1 is one of the cancer-related circRNAs that is implicated in various cancers. However, studies focusing on the role of circSLC8A1 in glioma is rare. Here we attempted to evaluate the biological function of circSLC8A1 in glioma and explore the potential mechanism. The relative expression of circSLC8A1, miR-214-5p and CDC27 in tissues and cell lines was determined by qRT-PCR. Cell proliferation and invasion were respectively measured by CCK-8 and transwell assays. Protein level of CDC27 was analyzed by western blot. Luciferase reporter assay was performed to confirm the regulatory interaction of cirRNA-miRNA-mRNA. Lowly expressed circSLC8A1 was observed in both glioma tissues and cell lines. Further biological analyses showed that circSLC8A1 inhibits the cell proliferation and invasion of glioma cells. CircSLC8A1 directly sponged miR-214-5p and inhibited miR-214-5p expression in glioma cells. CDC27 was a direct target of miR-214-5p and could be regulated by miR-214-5p. Moreover, miR-214-5p mimics and CDC27 knockdown reversed the inhibitory effects of circSLC8A1 on cell proliferation and invasion. Taken together, our results demonstrated a tumor suppressive role of circSLC8A1 in glioma through regulation of glioma cells proliferation and invasion. The effects of circSLC8A1 were mediated by miR-214-5p/CDC27 axis. Our study provided a new understanding of the occurrence and development of glioma.


Subject(s)
Glioma , MicroRNAs , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
8.
Exp Neurol ; 341: 113692, 2021 07.
Article in English | MEDLINE | ID: mdl-33727099

ABSTRACT

Triggering receptor expressed on myeloid cells-1 (TREM-1) was found to be induced in the context of subarachnoid hemorrhage (SAH) before. This study further investigates its role in the development of SAH-induced early brain injury (EBI). Firstly, rats were randomly divided into Sham and SAH groups for analysis of temporal patterns and cellular localization of TREM-1. Secondly, TREM-1 intervention was administrated to produce Sham, vehicle, antagonist and agonist groups, for analyzing TREM-1, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and NF-κB expressions at 24 h post-modeling, and EBI assessment at 24 h and 72 h. Thirdly, TLR4 inhibitor (TAK-242) was exploited to produce Sham, Sham+TAK-242, SAH, and SAH + TAK-242 groups to analyze the effects of TLR4 inhibition on TREM-1 induction and EBI evaluation at 72 h. Fourthly, the relationship of soluble TREM-1 (sTREM-1) levels in cerebrospinal fluid of SAH patients with Hunt-Hess grades were explored. The results showed that TREM-1 increased in the brain after experimental SAH (eSAH) early at 6 h and peaked at 48 h, which was found to be located in microglia and endothelial cells. TREM-1 inhibition attenuated EBI associated with TLR4/MyD88/NF-κB suppression, while enhancement had the opposite effects. Contrarily, TLR4 inhibition prevented TREM-1 induction and ameliorated EBI. In addition, sTREM-1 levels in SAH patients positively correlated with Hunt-Hess grades. Overall, the present study provides new evidence that TREM-1 increases dynamically in the brain after eSAH and it is located in microglia and endothelial cells, which may aggravate EBI by interacting with TLR4 pathway. And sTREM-1 in patients might act as a monitoring biomarker of EBI, providing new insights for future studies.


Subject(s)
Brain Injuries/metabolism , Brain Injuries/pathology , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Aged , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Male , Microglia/metabolism , Microglia/pathology , Middle Aged , Rats , Rats, Sprague-Dawley , Time Factors
9.
Sensors (Basel) ; 19(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669663

ABSTRACT

Maritime Autonomous Surface Ships (MASS) with advanced guidance, navigation, and control capabilities have attracted great attention in recent years. Sailing safely and efficiently are critical requirements for autonomous control of MASS. The MASS utilizes the information collected by the radar, camera, and Autonomous Identification System (AIS) with which it is equipped. This paper investigates the problem of optimal motion planning for MASS, so it can accomplish its sailing task early and safely when it sails together with other conventional ships. We develop velocity obstacle models for both dynamic and static obstacles to represent the potential conflict-free region with other objects. A greedy interval-based motion-planning algorithm is proposed based on the Velocity Obstacle (VO) model, and we show that the greedy approach may fail to avoid collisions in the successive intervals. A way-blocking metric is proposed to evaluate the risk of collision to improve the greedy algorithm. Then, by assuming constant velocities of the surrounding ships, a novel Dynamic Programming (DP) method is proposed to generate the optimal multiple interval motion plan for MASS. These proposed algorithms are verified by extensive simulations, which show that the DP algorithm provides the lowest collision rate overall and better sailing efficiency than the greedy approaches.

10.
Sci China C Life Sci ; 49(5): 500-12, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17172058

ABSTRACT

The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.


Subject(s)
Acclimatization/physiology , Altitude , Cattle/physiology , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Hypoxia/metabolism , Acclimatization/genetics , Animals , Cattle/genetics , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Hypoxia/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits
11.
Biol Trace Elem Res ; 103(2): 147-53, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15772438

ABSTRACT

The effects of hypoxia on the levels of essential macroelements and trace elements (K, Na, Ca, Mg, Cu, Zn, Fe, and Mn) in the heart muscles of Wistar rats and plateau pikas (Ochotona curzoniae) were studied by atomic absorption spectrometry. Unlike the rat, the plateau pika is tolerant to hypoxia. The levels of K, Na, and the trace element Mn were not significantly changed in rat or pika hearts after exposure to hypoxia for 1, 10, or 25 d at simulated altitudes of 5000 and 7000 m. Other minerals (Ca, Mg, Cu, Zn, and Fe) were significantly affected by hypoxia and the levels followed different time-courses under different hypoxic regimes in these two animals. There were marked differences between the rat and pika in myocardial accumulation of essential elements such as Ca, which was increased to high levels in the rat but not affected in the pika. The results suggest that hypoxia affects animal physiological mechanisms by regulating the levels of essential elements.


Subject(s)
Hypoxia , Lagomorpha , Minerals/analysis , Myocardium/chemistry , Rats, Wistar , Trace Elements/analysis , Animals , Male , Rats , Spectrophotometry, Atomic
12.
Sheng Wu Gong Cheng Xue Bao ; 18(5): 638-40, 2002 Sep.
Article in Chinese | MEDLINE | ID: mdl-12561216

ABSTRACT

Firstly the petal of Crocus sativus L was cultured on the medium that supplemented with different combinations of hormones. The petal-like structures(PLS) were induced on medium, but the induction rates were different in various medium. The highest induction rate of petal-like structures was obtained on the media that was supplemented with NAA (4 mg/L) and KT (8 mg/L). The petal-like structures were subcultured on another media when the structure was produced on the explants and proliferate groups. The later media was used for inducing style-stigma-like structures(SSLS). The induction rate of style-stigma-like-structures in the petal-like structures group is much higher than the rate in the preceding work, and the maximum of style-stigma-like structures produced per explant was 30. The best result of style-stigma-like structures was observed on the petal-like structure groups which came from the third treatment. The differentiation rate of style-stigma-like structures is stable in the subcultures of petal-like structures. The result revealed that the induction frequency of style-stigma-like structures formed on the petal-like structures is higher than that form on the petals of C. sativus L.


Subject(s)
Crocus/growth & development , Cell Differentiation , Culture Media
SELECTION OF CITATIONS
SEARCH DETAIL
...