Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 19(22): 8414-8422, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37943175

ABSTRACT

For an effective drug, strong binding to the target protein is a prerequisite, but it is not enough. To produce a particular functional response, drugs need to either block the proteins' functions or modulate their activities by changing their conformational equilibrium. The binding free energy of a compound to its target is routinely calculated, but the timescales for the protein conformational changes are prohibitively long to be efficiently modeled via physics-based simulations. Thermodynamic principles suggest that the binding free energies of the ligands with different receptor conformations may infer their efficacy. However, this hypothesis has not been thoroughly validated. We present an actionable protocol and a comprehensive study to show that binding thermodynamics provides a strong predictor of the efficacy of a ligand. We apply the absolute binding free energy perturbation method to ligands bound to active and inactive states of eight G protein-coupled receptors and a nuclear receptor and then compare the resulting binding free energies. We find that carefully designed restraints are often necessary to efficiently model the corresponding conformational ensembles for each state. Our method achieves unprecedented performance in classifying ligands as agonists or antagonists across the various investigated receptors, all of which are important drug targets.


Subject(s)
Receptors, G-Protein-Coupled , Protein Conformation , Ligands , Receptors, G-Protein-Coupled/metabolism , Thermodynamics , Protein Binding
2.
J Phys Chem Lett ; 12(18): 4368-4377, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33938761

ABSTRACT

We introduce a method called restrain-free energy perturbation-release 2.0 (R-FEP-R 2.0) to estimate conformational free energy changes of protein loops via an alchemical path. R-FEP-R 2.0 is a generalization of the method called restrain-free energy perturbation-release (R-FEP-R) that can only estimate conformational free energy changes of protein side chains but not loops. The reorganization of protein loops is a central feature of many biological processes. Unlike other advanced sampling algorithms such as umbrella sampling and metadynamics, R-FEP-R and R-FEP-R 2.0 do not require predetermined collective coordinates and transition pathways that connect the two endpoint conformational states. The R-FEP-R 2.0 method was applied to estimate the conformational free energy change of a ß-turn flip in the protein ubiquitin. The result obtained by R-FEP-R 2.0 agrees with the benchmarks very well. We also comment on problems commonly encountered when applying umbrella sampling to calculate protein conformational free energy changes.


Subject(s)
Ubiquitin-Specific Proteases/chemistry , Algorithms , Kinetics , Molecular Dynamics Simulation , Protein Conformation , Solvents/chemistry , Thermodynamics
3.
J Phys Chem B ; 124(52): 11771-11782, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33306906

ABSTRACT

Solvation thermodynamics is concerned with the evaluation and physical interpretation of solvation free energies. Endpoints DFT provides a framework for computing solvation free energies by combining molecular simulations with a version of the classical density-functional theory of solutions which focuses on ω, the indirect (solvent-mediated) part of the solute-solvent potential of mean force (indirect PMF). The simulations are performed at the endpoints of a hypothetical charging process which transforms the solvent density from the pure liquid state to that of the solution state. The endpoints DFT expression for solvation free energy can be shown to be equivalent to the standard expression for which the key quantity is the direct correlation function, but it has the advantage that the indirect term ω is more focused on the change in solvent-solvent correlations with respect to the pure liquid as the solute is inserted into the solution. In this Perspective, we review recent developments of endpoints DFT, highlighting a series of papers we have written together beginning in 2017. We emphasize the importance of dimensionality reduction as the key to the evaluation of endpoints DFT expressions and present a recently developed, spatially resolved version of the theory. The role of interfacial water at certain positions which stabilize or destabilize a solute in solution can be analyzed with the spatially resolved version, and it is of considerable interest to investigate how changes in solvation affect protein-ligand binding and conformational landscapes from an endpoints DFT perspective. Endpoints DFT can also be employed in materials science; an example involving the rational design strategy for polymer membrane separation is described. The endpoints DFT method is a scheme to evaluate the solvation free energy by introducing approximations to integrate the classical density functional over a charging parameter. We have further proposed a new functional which captures the correct dependence of the indirect PMF ω at both endpoints of the charging process, and we review how it might be employed in future work.


Subject(s)
Water , Ligands , Solutions , Solvents , Thermodynamics
4.
J Phys Chem B ; 124(25): 5220-5237, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32469519

ABSTRACT

Endpoints density functional theory (DFT) provides a framework for calculating the excess chemical potential of a solute in solution using solvent distribution functions obtained from both physical endpoints of a hypothetical charging process which transforms the solvent density from that of the pure liquid to the solution state. In this work, the endpoints DFT equations are formulated in terms of the indirect (solvent-mediated) contribution ω(x) to the solute-solvent potential of mean force, and their connections are established with the conventional DFT expressions which are based on the use of direct correlation functions. ω actually corresponds to the free-energy cost to move a cavity particle (a tagged solvent molecule which interacts with the other solvent molecules but not the solute) from the bulk to the configuration x of a solvent molecule relative to the solute and is a suitable variable to describe the solvent effects on the solute-solvent interactions. HNC and PY type approximations are then used to integrate the DFT charging integral involved in the exact expression for the excess chemical potential. With these approximations, molecular simulations are to be performed at the two endpoints of solute insertion: pure solvent without the solute and the solution system with the fully coupled solute-solvent interaction. An endpoints method thus utilizes the ensembles of intermolecular configurations of physical interest, which are often readily accessible with MD simulations given the present computational power. To illustrate properties of the formulation, we perform simulations of model systems consisting of a cavity particle in an aqueous solution containing a spherical hydrophobic solute of three different sizes from which ω(x) and the solute chemical potential can be calculated using endpoints DFT expressions. These are compared with corresponding results obtained using the approximations needed in order to evaluate the endpoints DFT charging integral when cavity particle simulation data is not available. We analyze a new approximation (two-points quadratic HNC) to the DFT charging integral which captures the correct behavior of the cavity distributions at both endpoints of the solute insertion. The behavior of the cavity particle in simple and complex liquids plays an important role in various theoretical treatments of the solute chemical potential. For pure Lennard-Jones fluids, the free energy to bring a cavity particle from the bulk to the center of a fluid particle is negative. However, for solutes of varying size, this is not generally true for Lennard-Jones fluids or the systems studied in this work. We carry out energetic and structural analyses of the cavity particle in aqueous solution with hydrophobic solutes of varying size and discuss the results in the context of the hydrophobic effect.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Water , Solutions , Solvents , Thermodynamics
5.
J Comput Chem ; 41(1): 56-68, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31621932

ABSTRACT

We propose a free energy calculation method for receptor-ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host-guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein-ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.


Subject(s)
Molecular Dynamics Simulation , Muramidase/chemistry , Phenols/chemistry , Thermodynamics , Binding Sites , Ligands , Muramidase/metabolism
6.
J Chem Theory Comput ; 16(1): 67-79, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31743019

ABSTRACT

Free energy perturbation (FEP) simulations have been widely applied to obtain predictions of the relative binding free energy for a series of congeneric ligands binding to the same receptor, which is an essential component for the lead optimization process in computer-aided drug discovery. In the case of several congeneric ligands forming a perturbation map involving a closed thermodynamic cycle, the summation of the estimated free energy change along each edge in the cycle using Bennett acceptance ratio (BAR) usually will deviate from zero due to systematic and random errors, which is the hysteresis of cycle closure. In this work, the advanced reweighting techniques binless weighted histogram analysis method (UWHAM) and locally weighted histogram analysis method (LWHAM) are applied to provide statistical estimators of the free energy change along each edge in order to eliminate the hysteresis effect. As an example, we analyze a closed thermodynamic cycle involving four congeneric ligands which bind to HIV-1 integrase, a promising target which has emerged for antiviral therapy. We demonstrate that, compared with FEP and BAR, more accurate and hysteresis-free estimates of free energy differences can be achieved by using UWHAM to find a single estimate of the density of states based on all of the data in the cycle. Furthermore, by comparison of LWHAM results obtained from the inclusion of different numbers of neighboring states with UWHAM estimation involving all the states, we show how to determine the optimal neighborhood size in the LWHAM analysis to balance the trade-offs between computational cost and accuracy of the free energy prediction. Even with the smallest neighborhood, LWHAM can improve the BAR free energy estimates using the same input data as BAR. We introduce an overlapping states matrix that is constructed by using the global jump formula of LWHAM and plot its heat map. The heat map provides a quantitative measure of the overlap between pairs of alchemical/thermodynamic states. We explain how to identify and improve the FEP calculations along the edges that most likely cause large systematic errors by using the heat map of the overlapping states matrix and by comparing the BAR and UWHAM estimates of the free energy change.

7.
J Chem Theory Comput ; 15(5): 2896-2912, 2019 May 14.
Article in English | MEDLINE | ID: mdl-30990682

ABSTRACT

A spatially resolved version of the density-functional method for solvation thermodynamics is presented by extending the free-energy functional previously established in the one-dimensional, energy representation and formulating a new expression in a mixed four-dimensional representation (three dimensions for position and one dimension for energy). The space was further divided into a set of discrete regions with respect to the relative position of a solvent molecule from the solute, and the spatially decomposed energetics of solvation were analyzed for small molecules with a methyl, amine, or hydroxyl group and alanine dipeptide in solvent water. It was observed that the density of the solvation free energy is weakly dependent on the solute site in the excluded-volume region and is distinctively favorable in the first shells of the solute atoms that can readily form hydrogen bonds with water. The solvent-reorganization term reduces faster with the separation from the solute than the direct interaction between the solute and solvent, and the latter governs the energetics in the second shell and outer regions. The sum of the contributions to the free energy from the excluded volume and first shell was found to deviate significantly from the total sum over all the regions, implying that the solvation free energy is not spatially localized near the solute in a quantitative sense. Still, a local description was shown to be valid as confirmed by the correlation of the total value of free energy with the corresponding value obtained by integrating the free-energy density to the second shell. The theoretical framework developed in the present work to spatially decompose the solvation free energy can thus be useful to identify stabilizing or destabilizing regions of solvent proximate to a solute and to analyze the role that the displacement of interfacial water plays in the thermodynamics of molecular association.

8.
Sci Rep ; 9(1): 2803, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808938

ABSTRACT

We introduce the UWHAM (binless weighted histogram analysis method) and SWHAM (stochastic UWHAM) software package that can be used to estimate the density of states and free energy differences based on the data generated by multi-state simulations. The programs used to solve the UWHAM equations are written in the C++ language and operated via the command line interface. In this paper, first we review the theoretical bases of UWHAM, its stochastic solver RE-SWHAM (replica exchange-like SWHAM)and ST-SWHAM (serial tempering-like SWHAM). Then we provide a tutorial with examples that explains how to apply the UWHAM program package to analyze the data generated by different types of multi-state simulations: umbrella sampling, replica exchange, free energy perturbation simulations, etc. The tutorial examples also show that the UWHAM equations can be solved stochastically by applying the RE-SWHAM and ST-SWHAM programs when the data ensemble is large. If the simulations at some states are far from equilibrium, the Stratified RE-SWHAM program can be applied to obtain the equilibrium distribution of the state of interest. All the source codes and the tutorial examples are available from our group's web page: https://ronlevygroup.cst.temple.edu/software/UWHAM_and_SWHAM_webpage/index.html .


Subject(s)
Models, Molecular , Software , Algorithms , Stochastic Processes , Thermodynamics
9.
J Phys Chem Lett ; 9(15): 4428-4435, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30024165

ABSTRACT

We introduce a novel method called restrain-free energy perturbation-release (R-FEP-R) to estimate conformational free energy changes via an alchemical path, which for some conformational landscapes like those associated with cellular signaling proteins in the kinase family is more direct and readily converged than the corresponding free energy changes along the physical path. The R-FEP-R method was developed from the dual topology free energy perturbation method that is widely applied to estimate the binding free energy difference between two ligands. In R-FEP-R, the free energy change between two conformational basins is calculated by free energy perturbations that remove those atoms involved in the conformational change from their initial conformational basin while simultaneously growing them back according to the final conformational basin. Both the initial and final dual topology states are unphysical, but they are designed in a way such that the unphysical contributions to the initial and final partition functions cancel. Compared with other advanced sampling algorithms such as umbrella sampling and metadynamics, the R-FEP-R method does not require predetermined transition pathways or reaction coordinates that connect the two conformational states. As a first illustration, the R-FEP-R method was applied to calculate the free energy change between conformational basins for alanine dipeptide in solution and for a side chain in the binding pocket of T4 lysozyme. The results obtained by R-FEP-R agree with the benchmarks very well.

10.
Phys Chem Chem Phys ; 20(25): 17081-17092, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29896599

ABSTRACT

Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.

11.
J Phys Chem B ; 122(17): 4700-4707, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29634902

ABSTRACT

We use end point simulations to estimate the excess chemical potential of water in the homogeneous liquid and at the interface with a protein in solution. When the pure liquid is taken as the reference, the excess chemical potential of interfacial water is the difference between the solvation free energy of a water molecule at the interface and in the bulk. Using the homogeneous liquid as an example, we show that the solvation free energy for growing a water molecule can be estimated by applying UWHAM to the simulation data generated from the initial and final states (i.e., "the end points") instead of multistate free energy perturbation simulations because of the possible overlaps of the configurations sampled at the end points. Then end point simulations are used to estimate the solvation free energy of water at the interface with a protein in solution. The estimate of the solvation free energy at the interface from two simulations at the end points agrees with the benchmark using 32 states within a 95% confidence interval for most interfacial locations. The ability to accurately estimate the excess chemical potential of water from end point simulations facilitates the statistical thermodynamic analysis of diverse interfacial phenomena. Our focus is on analyzing the excess chemical potential of water at protein receptor binding sites with the goal of using this information to assist in the design of tight binding ligands.


Subject(s)
Models, Molecular , Proteins/chemistry , Water/chemistry , Protein Conformation , Thermodynamics
12.
J Chem Theory Comput ; 14(2): 512-526, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29262255

ABSTRACT

Classical density functional theory (DFT) can be used to relate the thermodynamic properties of solutions to the indirect solvent mediated part of the solute-solvent potential of mean force (PMF). Standard, but powerful numerical methods can be used to estimate the solute-solvent PMF from which the indirect part can be extracted. In this work we show how knowledge of the direct and indirect parts of the solute-solvent PMF for water at the interface of a protein receptor can be used to gain insights about how to design tighter binding ligands. As we show, the indirect part of the solute-solvent PMF is equal to the sum of the 1-body (energy + entropy) terms in the inhomogeneous solvation theory (IST) expansion of the solvation free energy. To illustrate the effect of displacing interfacial water molecules with particular direct/indirect PMF signatures on the binding of ligands, we carry out simulations of protein binding with several pairs of congeneric ligands. We show that interfacial water locations that contribute favorably or unfavorably at the 1-body level (energy + entropy) to the solvation free energy of the solute can be targeted as part of the ligand design process. Water locations where the indirect PMF is larger in magnitude provide better targets for displacement when adding a functional group to a ligand core.


Subject(s)
Factor Xa/chemistry , Quantum Theory , Thermodynamics , Water/chemistry , Binding Sites , Ligands , Models, Molecular , Molecular Structure , Solvents/chemistry
13.
J Chem Theory Comput ; 13(10): 4660-4674, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28902500

ABSTRACT

We describe a new analysis tool called Stratified unbinned Weighted Histogram Analysis Method (Stratified-UWHAM), which can be used to compute free energies and expectations from a multicanonical ensemble when a subset of the parallel simulations is far from being equilibrated because of barriers between free energy basins which are only rarely (or never) crossed at some states. The Stratified-UWHAM equations can be obtained in the form of UWHAM equations but with an expanded set of states. We also provide a stochastic solver, Stratified RE-SWHAM, for Stratified-UWHAM to remove its computational bottleneck. Stratified-UWHAM and Stratified RE-SWHAM are applied to study three test topics: the free energy landscape of alanine dipeptide, the binding affinity of a host-guest binding complex, and path sampling for a two-dimensional double well potential. The examples show that when some of the parallel simulations are only locally equilibrated, the estimates of free energies and equilibrium distributions provided by the conventional UWHAM (or MBAR) solutions exhibit considerable biases, but the estimates provided by Stratified-UWHAM and Stratified RE-SWHAM agree with the benchmark very well. Lastly, we discuss features of the Stratified-UWHAM approach which is based on coarse-graining in relation to two other maximum likelihood-based methods which were proposed recently, that also coarse-grain the multicanonical data.

14.
J Phys Chem B ; 121(15): 3825-3841, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28186751

ABSTRACT

Inhomogeneous solvation theory (IST) and classical density functional theory (DFT) each provide a framework for relating distribution functions of solutions to their thermodynamic properties. As reviewed in this work, both IST and DFT can be formulated in a way that use two "end point" simulations, one of the pure solvent and the other of the solution, to determine the solute chemical potential and other thermodynamic properties of the solution and of subvolumes in regions local to the solute containing hydrating waters. In contrast to IST, where expressions for the excess energy and entropy of solution are the object of analysis, in the DFT end point formulation of the problem, the solute-solvent potential of mean force (PMF) plays a central role. The indirect part of the PMF corresponds to the lowest order (1-body) truncation of the IST expression. Because the PMF is a free energy function, powerful numerical methods can be used to estimate it. We show that the DFT expressions for the solute excess chemical potential can be written in a form which is local, involving integrals only over regions proximate to the solute. The DFT end point route to estimating solvation free energies provides an alternative path to that of IST for analyzing solvation effects on molecular recognition and conformational changes in solution, which can lead to new insights. In order to illustrate the kind of information that is contained in the solute-solvent PMF, we have carried out simulations of ß-cyclodextrin in water. This solute is a well studied "host" molecule to which "guest" molecules bind; host-guest systems serve as models for molecular recognition. We illustrate the range of values the direct and indirect parts of the solute-solvent PMF can have as a water molecule is brought to the interface of ß-cyclodextrin from the bulk; we discuss the "competition" between these two terms, and the role it plays in molecular recognition.


Subject(s)
Quantum Theory , Solvents/chemistry , Thermodynamics , Solubility , Solutions/chemistry
15.
J Phys Chem B ; 120(33): 8289-301, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27079355

ABSTRACT

Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.


Subject(s)
Algorithms , Heptanoic Acids/chemistry , Molecular Dynamics Simulation , beta-Cyclodextrins/chemistry , Kinetics , Markov Chains , Temperature , Thermodynamics
16.
J Chem Phys ; 144(3): 034107, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26801020

ABSTRACT

The weighted histogram analysis method (WHAM) including its binless extension has been developed independently in several different contexts, and widely used in chemistry, physics, and statistics, for computing free energies and expectations from multiple ensembles. However, this method, while statistically efficient, is computationally costly or even infeasible when a large number, hundreds or more, of distributions are studied. We develop a locally WHAM (local WHAM) from the perspective of simulations of simulations (SOS), using generalized serial tempering (GST) to resample simulated data from multiple ensembles. The local WHAM equations based on one jump attempt per GST cycle can be solved by optimization algorithms orders of magnitude faster than standard implementations of global WHAM, but yield similarly accurate estimates of free energies to global WHAM estimates. Moreover, we propose an adaptive SOS procedure for solving local WHAM equations stochastically when multiple jump attempts are performed per GST cycle. Such a stochastic procedure can lead to more accurate estimates of equilibrium distributions than local WHAM with one jump attempt per cycle. The proposed methods are broadly applicable when the original data to be "WHAMMED" are obtained properly by any sampling algorithm including serial tempering and parallel tempering (replica exchange). To illustrate the methods, we estimated absolute binding free energies and binding energy distributions using the binding energy distribution analysis method from one and two dimensional replica exchange molecular dynamics simulations for the beta-cyclodextrin-heptanoate host-guest system. In addition to the computational advantage of handling large datasets, our two dimensional WHAM analysis also demonstrates that accurate results similar to those from well-converged data can be obtained from simulations for which sampling is limited and not fully equilibrated.


Subject(s)
Stochastic Processes , Thermodynamics
17.
J Chem Theory Comput ; 11(6): 2868-78, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26236174

ABSTRACT

The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein­ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Solvents/chemistry , Thermodynamics , Protein Conformation , Solubility , Surface Properties
18.
J Comput Chem ; 36(23): 1772-85, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26149645

ABSTRACT

We describe methods to perform replica exchange molecular dynamics (REMD) simulations asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations on grid computing networks consisting of heterogeneous and distributed computing environments as well as on homogeneous high-performance clusters. We have implemented these methods on NSF (National Science Foundation) XSEDE (Extreme Science and Engineering Discovery Environment) clusters and BOINC (Berkeley Open Infrastructure for Network Computing) distributed computing networks at Temple University and Brooklyn College at CUNY (the City University of New York). They are also being implemented on the IBM World Community Grid. To illustrate the methods, we have performed extensive (more than 60 ms in aggregate) simulations for the beta-cyclodextrin-heptanoate host-guest system in the context of one- and two-dimensional ASyncRE, and we used the results to estimate absolute binding free energies using the binding energy distribution analysis method. We propose ways to improve the efficiency of REMD simulations: these include increasing the number of exchanges attempted after a specified molecular dynamics (MD) period up to the fast exchange limit and/or adjusting the MD period to allow sufficient internal relaxation within each thermodynamic state. Although ASyncRE simulations generally require long MD periods (>picoseconds) per replica exchange cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the combination of the MD period and the number of exchanges attempted per cycle.


Subject(s)
Heptanoates/chemistry , Molecular Dynamics Simulation , beta-Cyclodextrins/chemistry , Algorithms , Thermodynamics
19.
J Phys Chem Lett ; 6(19): 3834-40, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26722879

ABSTRACT

The weighted histogram analysis method (WHAM) and unbinned versions such as the multistate Bennett acceptance ratio (MBAR) and unbinned WHAM (UWHAM) are widely used to compute free energies and expectations from data generated by independent or coupled parallel simulations. Here we introduce a replica exchange-like algorithm (RE-SWHAM) that can be used to solve the UWHAM equations stochastically. This method is capable of analyzing large data sets generated by hundreds or even thousands of parallel simulations that are too large to be "WHAMMED" using standard methods. We illustrate the method by applying it to obtain free energy weights for each of the 240 states in a simulation of host-guest ligand binding containing ∼3.5 × 10(7) data elements collected from 16 parallel Hamiltonian replica exchange simulations, performed at 15 temperatures. In addition to using much less memory, RE-SWHAM showed a nearly 80-fold improvement in computational time compared with UWHAM.


Subject(s)
Stochastic Processes , Algorithms , Thermodynamics
20.
Protein Sci ; 22(5): 595-604, 2013 May.
Article in English | MEDLINE | ID: mdl-23450521

ABSTRACT

Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19-siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile.


Subject(s)
RNA, Small Interfering/metabolism , Tombusvirus/metabolism , Viral Proteins/metabolism , Binding Sites , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Plants/virology , Protein Binding , Protein Conformation , Tombusvirus/chemistry , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...