Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Mater Chem C Mater ; 12(17): 6310-6318, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38707254

ABSTRACT

Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.

2.
iScience ; 27(6): 109952, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38812537

ABSTRACT

The sun and outer space are two crucial renewable thermodynamic resources that work together to maintain the delicate energy balance of our planet. The challenge lies in harvesting both resources synergistically and converting them into high-quality electricity. Here, we introduce a photovoltaic thermoelectric radiative cooling (PV-TE-RC) system. This system uses the full spectrum of the sun and the atmospheric window to generate electricity and achieve high-quality collaborative utilization of solar energy and space energy. Outdoor experiments have demonstrated the system's capacity to operate efficiently around the clock. Notably, during the peak solar concentration, the thermoelectric generator (TEG) and the system achieved power outputs of 870 mW/m2 and 85.87 W/m2, respectively. We have further developed a three-dimensional transient coupled simulation model, which can accurately predict its operational limits. Therefore, this study provides practical insights and recommendations for large-scale and efficient collaborative power generation using these two thermodynamic resources.

3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 743-752, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37666765

ABSTRACT

Corona virus disease 2019 (COVID-19) is an acute respiratory infectious disease with strong contagiousness, strong variability, and long incubation period. The probability of misdiagnosis and missed diagnosis can be significantly decreased with the use of automatic segmentation of COVID-19 lesions based on computed tomography images, which helps doctors in rapid diagnosis and precise treatment. This paper introduced the level set generalized Dice loss function (LGDL) in conjunction with the level set segmentation method based on COVID-19 lesion segmentation network and proposed a dual-path COVID-19 lesion segmentation network (Dual-SAUNet++) to address the pain points such as the complex symptoms of COVID-19 and the blurred boundaries that are challenging to segment. LGDL is an adaptive weight joint loss obtained by combining the generalized Dice loss of the mask path and the mean square error of the level set path. On the test set, the model achieved Dice similarity coefficient of (87.81 ± 10.86)%, intersection over union of (79.20 ± 14.58)%, sensitivity of (94.18 ± 13.56)%, specificity of (99.83 ± 0.43)% and Hausdorff distance of 18.29 ± 31.48 mm. Studies indicated that Dual-SAUNet++ has a great anti-noise capability and it can segment multi-scale lesions while simultaneously focusing on their area and border information. The method proposed in this paper assists doctors in judging the severity of COVID-19 infection by accurately segmenting the lesion, and provides a reliable basis for subsequent clinical treatment.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Respiratory Rate , Tomography, X-Ray Computed
4.
Angew Chem Int Ed Engl ; 62(47): e202308602, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37647167

ABSTRACT

Image contrast is often limited by background autofluorescence in steady-state bioimaging microscopy. Upconversion bioimaging can overcome this by shifting the emission lifetime and wavelength beyond the autofluorescence window. Here we demonstrate the first example of triplet-triplet annihilation upconversion (TTA-UC) based lifetime imaging microscopy. A new class of ultra-small nanoparticle (NP) probes based on TTA-UC chromophores encapsulated in an organic-inorganic host has been synthesised. The NPs exhibit bright UC emission (400-500 nm) in aerated aqueous media with a UC lifetime of ≈1 µs, excellent colloidal stability and little cytotoxicity. Proof-of-concept demonstration of TTA-UC lifetime imaging using these NPs shows that the long-lived anti-Stokes emission is easily discriminable from typical autofluorescence. Moreover, fluctuations in the UC lifetime can be used to map local oxygen diffusion across the subcellular structure. Our TTA-UC NPs are highly promising stains for lifetime imaging microscopy, affording excellent image contrast and potential for oxygen mapping that is ripe for further exploitation.

5.
Mitochondrial DNA B Resour ; 8(2): 220-221, 2023.
Article in English | MEDLINE | ID: mdl-36755881

ABSTRACT

The chinaberry yellow-banded longhorn beetle, Anoplophora horsfieldi Hope 1842 (Coleoptera: Cerambycidae) is an important pest on many economic tree species. In this study, the complete mitochondrial genome of A. horsfieldi was determined, which was 15,837 bp in length and contained 37 genes, including 13 protein-coding genes (PCGs), two rRNA, 22 tRNA genes, and a non-coding A + T-rich region. The phylogenetic analysis based on mitochondrial genomes showed that A. horsfieldi is sister to a clade formed by A. chinensis and A. glabripennis.

6.
Environ Sci Technol ; 56(20): 14262-14271, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36206450

ABSTRACT

Intermediate volatility organic compounds (IVOCs) are important precursors of secondary organic aerosols, and their sources remain poorly defined. N-alkanes represent a considerable portion of IVOCs in atmosphere, which can be well identified and quantified out of the complex IVOC pool. To investigate the potential source diversity of intermediate volatility n-alkanes (IVnAs, nC12-nC20), we apportioned the sources of IVnAs in the atmosphere of four North China cities, based on their compound-specific δ13C-δD isotope compositions and Bayesian model analysis. The concentration level of IVnAs reached 1195 ± 594 ng/m3. The δ13C values of IVnAs ranged -32.3 to -27.6‰ and δD values -161 to -90‰. The δD values showed a general increasing trend toward higher carbon number alkanes, albeit a zigzag odd-even prevalence. Bayesian MixSIAR model using δ13C and δD compositions revealed that the source patterns of individual IVnAs were inconsistent; the relative contributions of liquid fossil combustion were higher for lighter IVnAs (e.g., nC12-nC13), while those of coal combustion were higher for heavier IVnAs (e.g., nC17-nC20). This result agrees with principal component analysis of the dual isotope data. Overall, coal combustion, liquid fossil fuel combustion, and biomass burning contributed about 47.8 ± 0.1, 35.7 ± 4.0, and 16.3 ± 4.2% to the total IVnAs, respectively, highlighting the importance of coal combustion as an IVnA source in North China. Our study demonstrates that the dual-isotope approach is a powerful tool for source apportionment of atmospheric IVOCs.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , Alkanes/analysis , Bayes Theorem , Carbon , China , Coal , Environmental Monitoring , Fossil Fuels , Isotopes
7.
Adv Sci (Weinh) ; 9(23): e2201160, 2022 08.
Article in English | MEDLINE | ID: mdl-35678107

ABSTRACT

Luminescent solar concentrators (LSCs) are an emerging technology to collect and channel light from a large absorption area into a smaller one. They are a complementary technology for traditional solar photovoltaics (PV), particularly suitable for application in urban or indoor environments where their custom colors and form factors, and performance under diffuse light conditions may be advantageous. Förster resonance energy transfer (FRET) has emerged as a valuable approach to overcome some of the intrinsic limitations of conventional single lumophore LSCs, such as reabsorption or reduced quantum efficiency. This review outlines the potential of FRET to boost LSC performance, using highlights from the literature to illustrate the key criteria that must be considered when designing an FRET-LSC, including both the photophysical requirements of the FRET lumophores and their interaction with the host material. Based on these criteria, a list of design guidelines intended to aid researchers when they approach the design of a new FRET-LSC system is presented. By highlighting the unanswered questions in this field, the authors aim to demonstrate the potential of FRET-LSCs for both conventional solar-harvesting and emerging LSC-inspired technologies and hope to encourage participation from a diverse researcher base to address this exciting challenge.


Subject(s)
Fluorescence Resonance Energy Transfer , Luminescence
8.
J Am Chem Soc ; 143(48): 20384-20394, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34807589

ABSTRACT

The alternating physical properties, especially melting points, of α,ω-disubstituted n-alkanes and their parent n-alkanes had been known since Baeyer's report in 1877. There is, however, no general and comprehensive explanation for such a phenomenon. Herein, we report the synthesis and examination of a series of novel ω-phenyl n-alkyl tropylium tetrafluoroborates, which also display alternation in their physicochemical characters. Despite being organic salts, the compounds with odd numbers of carbons in the alkyl bridge exist as room temperature ionic liquids. In stark contrast to this, the analogues with even numbers of carbons in the linker are crystalline solids. These solid nonconjugated molecules exhibit curious photoluminescent properties, which can be attributed to their ability to form through-space charge-transfer complexes to cause crystallization-induced emission enhancement. Most notably, the compound with the highest photoluminescent quantum yield in this series showed an unusual arrangement of carbocationic dimer in the solid state. A combination of XRD analysis and ab initio calculations revealed interesting insights into these systems.

9.
Macromolecules ; 54(12): 5287-5303, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34176961

ABSTRACT

Triplet-triplet annihilation upconversion (TTA-UC) is a process by which a lower energy photon can be upconverted to a higher energy state. The incorporation of TTA-UC materials into solid-state hosts has enabled advances in solar energy and many other applications. The choice of host system is, however, far from trivial and often calls for a careful compromise between characteristics such as high molecular mobility, low oxygen diffusion, and high material stability, factors that often contradict one another. Here, we evaluate these challenges in the context of the state-of-the-art of primarily polymer hosts and the advantages they hold in terms of material selection and tunability of their diffusion or mechanical or thermal properties. We encourage more collaborative research between polymer scientists and photophysicists in order to further optimize the current systems and outline our thoughts for the future direction of the field.

10.
Chaos ; 31(3): 033120, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33810754

ABSTRACT

Identification of influential nodes in complex networks is an area of exciting growth since it can help us to deal with various problems. Furthermore, identifying important nodes can be used across various disciplines, such as disease, sociology, biology, engineering, just to name a few. Hence, how to identify influential nodes more accurately deserves further research. Traditional identification methods usually only focus on the local or global information of the network. However, only focusing on a part of the information in the network will lead to the loss of information, resulting in inaccurate results. In order to address this problem, an identification method based on network efficiency of edge weight updating is proposed, which can effectively incorporate both global and local information of the network. Our proposed method avoids the lack of information in the network and ensures the accuracy of the results as much as possible. Moreover, by introducing the iterative idea of weight updating, some dynamic information is also introduced into our proposed method, which is more convincing. Varieties of experiments have been carried out on 11 real-world data sets to demonstrate the effectiveness and superiority of our proposed method.

11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(2): 379-386, 2021 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-33913299

ABSTRACT

Lung diseases such as lung cancer and COVID-19 seriously endanger human health and life safety, so early screening and diagnosis are particularly important. computed tomography (CT) technology is one of the important ways to screen lung diseases, among which lung parenchyma segmentation based on CT images is the key step in screening lung diseases, and high-quality lung parenchyma segmentation can effectively improve the level of early diagnosis and treatment of lung diseases. Automatic, fast and accurate segmentation of lung parenchyma based on CT images can effectively compensate for the shortcomings of low efficiency and strong subjectivity of manual segmentation, and has become one of the research hotspots in this field. In this paper, the research progress in lung parenchyma segmentation is reviewed based on the related literatures published at domestic and abroad in recent years. The traditional machine learning methods and deep learning methods are compared and analyzed, and the research progress of improving the network structure of deep learning model is emphatically introduced. Some unsolved problems in lung parenchyma segmentation were discussed, and the development prospect was prospected, providing reference for researchers in related fields.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Machine Learning , SARS-CoV-2 , Tomography, X-Ray Computed
12.
Mitochondrial DNA B Resour ; 6(1): 43-44, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33490595

ABSTRACT

The olive weevil Dyscerus cribripennis (Coleoptera: Curculionidae) is an uncontrollable noxious insect to Olea europaea. The 15,977 bp complete mitochondrial genome of D. cribripennis contained 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 21 transfer RNA genes (tRNAs), and a control region (GenBank accession number MW023069). The trnI was not found in the D. cribripennis mitogenome. The phylogenetic analysis based on mitogenomes showed that D. cribripennis is closed related with Hylobitelus xiaoi.

13.
Methods Appl Fluoresc ; 8(3): 037001, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32492666

ABSTRACT

A Monte-Carlo ray tracing simulator with a graphical user interface (MCRTS-GUI) has been developed to provide a quantitative description, performance evaluation and photon loss analysis of luminescent solar concentrators (LSCs). The algorithm is applied to several practical LSC device structures including multiple dyes in the same waveguiding layer, and structures where a dye layer is sandwiched between clear substrates. The effect of the host matrix absorption and the influence of the neighboring layers are investigated. Validations demonstrate that the MCRTS-GUI developed provides a reliable and accurate description of LSC performance. Code for the mixed-dye single layer configuration is converted into a ray-tracing package with a user-friendly interface and is made available as open source software.

14.
Environ Sci Technol ; 54(9): 5409-5418, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32259434

ABSTRACT

Naphthalene (NAP), as a surrogate of intermediate-volatility organic compounds (IVOCs), has been proposed to be an important precursor of secondary organic aerosol (SOA). However, the relative contribution of its emission sources is still not explicit. This study firstly conducted the source apportionment of atmospheric NAP using a triple-isotope (δ13C, δ2H, and Δ14C) technique combined with a Bayesian model in the Beijing-Tianjin-Hebei (BTH) region of China. At the urban sites, stable carbon (-27.7 ± 0.7‰, δ13C) and radiocarbon (-944.0 ± 20.4‰, Δ14C) isotope compositions of NAP did not exhibit significant seasonal variation, but the deuterium system showed a relatively more 2H depleted signature in winter (-86.7 ± 8.9‰, δ2H) in comparison to that in summer (-56.4 ± 3.9‰, δ2H). Radiocarbon signatures indicated that 95.1 ± 1.8% of NAP was emitted from fossil sources in these cities. The Bayesian model results indicated that the emission source compositions in the BTH urban sites had a similar pattern. The contribution of liquid fossil combustion was highest (46.7 ± 2.6%), followed by coal high-temperature combustion (26.8 ± 7.1%), coal low-temperature combustion (18.9 ± 6.4%), and biomass burning (7.6 ± 3.1%). At the suburban site, the contribution of coal low-temperature combustion could reach 70.1 ± 6.4%. The triple-isotope based approach provides a top-down constraint on the sources of atmospheric NAP and could be further applied to other IVOCs in the ambient atmosphere.


Subject(s)
Air Pollutants/analysis , Volatile Organic Compounds , Bayes Theorem , Beijing , China , Cities , Environmental Monitoring , Isotopes , Naphthalenes , Volatilization
15.
Phys Chem Chem Phys ; 22(11): 6300-6307, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32133470

ABSTRACT

Improving the efficiency of triplet fusion upconversion (TF-UC) in the solid-state is still challenging due to the aggregation and phase separation of chromophores. In this work, two 9,10-diphenylanthracene (DPA) derivatives based on the modification of the 9,10-phenyl rings with bulky isopropyl groups (bDPA-1 and bDPA-2) were used as emitters. By using platinum octaethylporphyrin (PtOEP) as the sensitizer, TF-UC performance was comprehensively investigated in 3 media: toluene solution, polyurethane thin film and nano/micro-crystals in a polyvinyl alcohol matrix. Only a small difference in upconversion efficiency between the bulky DPAs and the DPA reference was observed in toluene solution and polyurethane thin film. However, a large improvement of TF-UC quantum yield was achieved in bDPA-2/PtOEP crystals (ΦUC = (0.92 ± 0.05)%) with a low excitation intensity threshold (52 mW cm-2) compared to that of DPA/PtOEP crystals (ΦUC = (0.09 ± 0.03)%). This difference was largely attributed to improved dispersibility of the PtOEP sensitizer in the bDPA-2 emitter crystals. The bulky DPAs also show excellent stability under UV irradiation with exposure to oxygen compared to DPA. These results provide a strategy for developing efficient solid-state TF-UC systems based on nano/micro-particles of emitter-sensitizer mixtures.

16.
Chem Commun (Camb) ; 55(77): 11591-11594, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31497820

ABSTRACT

Tetrabenzo[5.7]fulvalene, one of the first recognized stable members of mixed fulvalenes, has attracted widespread interest for its remarkable structure. However, little has been known about its photoactivity, most likely owing to its very weak luminescence in the solution state. Here we show for the first time that this compound exhibits aggregation-induced emission (AIE) properties. Its photoluminescence and X-ray crystal structure reveal an interesting mechanism of the AIE phenomenon.

17.
Chempluschem ; 84(6): 746-753, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31944010

ABSTRACT

A series of tetraphenylethene 9,10-diphenylanthracene (TPE-DPA) derivatives have been synthesized, and their photophysical properties studied. Photoluminescence measurements in PMMA, neat films and nanoparticle dispersions reveal that different aggregation states are formed, which leads to different photophysical behavior. The triplet excited state properties were studied using Pt(II) octaethylporphyrin (PtOEP) as triplet sensitizer. Upconverted emission from the DPA moiety is observed in nanoparticle dispersions of each derivative. A higher upconverted emission intensity is observed in aerated (compared to deaerated) solutions of the derivatives following irradiation, which is attributed to oxidation of the TPE moiety. These results provide valuable insight for the design of AIE luminogens for triplet-triplet annihilation upconversion (TTA-UC).

18.
Angew Chem Int Ed Engl ; 56(44): 13882-13886, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28695638

ABSTRACT

We report the findings of our experimental and theoretical investigations into the properties of pyridinium enolates and their potential utility in light-harvesting applications, such as in luminescent solar concentrators (LSCs). We present the synthesis, structures, photophysical characterization, and wavefunction-based quantum-chemical studies of five cyclobetaines. The performance of an LSC device incorporating one of these cyclobetaines is shown to be comparable to state-of-the-art devices.

19.
Acc Chem Res ; 50(1): 49-57, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27992172

ABSTRACT

Luminescent solar concentrators (LSCs) are light harvesting devices that are ideally suited to light collection in the urban environment where direct sunlight is often not available. LSCs consist of highly luminescent compounds embedded or coated on a transparent substrate that absorb diffuse or direct solar radiation over a large area. The resulting luminescence is trapped in the waveguide by total internal reflection to the thin edges of the substrate where the concentrated light can be used to improve the performance of photovoltaic devices. The concept of LSCs has been around for several decades, and yet the efficiencies of current devices are still below expectations for commercial viability. There are two primary challenges when designing new chromophores for LSC applications. Reabsorption of dye emission by chromophores within the waveguide is a significant loss mechanism attenuating the light output of LSCs. Concentration quenching, particularly in organic dye systems, restricts the quantity of chromophores that can be incorporated in the waveguide thus limiting the light absorbed by the LSC. Frequently, a compromise between increased light harvesting of the incident light and decreasing emission quantum yield is required for most organic chromophore-based systems due to concentration quenching. The low Stokes shift of common organic dyes used in current LSCs also imposes another optimization problem. Increasing light absorption of LSCs based on organic dyes to achieve efficient light harvesting also enhances reabsorption. Ideally, a design strategy to simultaneously optimize light harvesting, concentration quenching, and reabsorption of LSC chromophores is clearly needed to address the significant losses in LSCs. Over the past few years, research in our group has targeted novel dye structures that address these primary challenges. There is a common perception that dye aggregates are to be avoided in LSCs. It became apparent in our studies that aggregates of chromophores exhibiting aggregation-induced emission (AIE) behavior are attractive candidates for LSC applications. Strategic application of AIE chromophores has led to the development of the first organic-based transparent solar concentrator that harvests UV light as well as the demonstration of reabsorption reduction by taking advantage of energy migration processes between chromophores. Further developments led us to the application of perylene diimides using an energy migration/energy transfer approach. To prevent concentration quenching, a molecularly insulated perylene diimide with bulky substituents attached to the imide positions was designed and synthesized. By combining the insulated perylene diimide with a commercial perylene dye as an energy donor-acceptor emitter pair, detrimental luminescence reabsorption was reduced while achieving a high chromophore concentration for efficient light absorption. This Account reviews and reinspects some of our recent work and the improvements in the field of LSCs.

20.
Beilstein J Org Chem ; 12: 903-11, 2016.
Article in English | MEDLINE | ID: mdl-27340480

ABSTRACT

Following an initial work on the isolation of a single geometric isomer from an indene-C70 bisadduct (IC70BA) mixture, we report the full fractionation and identification of the bisadduct species in the material. Eleven fractions of IC70BA isomers were separated by high-performance liquid chromatography. A number of fractions contained relatively pure isomer species and their configuration were deduced using a variety of analytical techniques including (1)H and (13)C NMR and UV-vis spectroscopy. The electrochemical properties and the organic solar cell device performance were investigated for fractions where a reasonable quantity of sample could be isolated.

SELECTION OF CITATIONS
SEARCH DETAIL
...