Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Neuroimmunol ; 367: 577863, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35436744

ABSTRACT

Cerebral small vessel disease (cSVD) accounts for 25% of ischemic strokes and is a major cause of cognitive decline. Inflammatory processes, involving immune cells and platelets might drive development and progression of cSVD. The aim of the study was to identify potential novel biomarkers for cSVD, gaining new insights into its pathophysiology. We measured inflammation and platelet and neutrophil activation markers in patients with cSVD and age-matched controls. It was hypothesized that cSVD is accompanied by altered levels of these markers. The levels of interleukin 1ß, CX3CL1, CXCL4, CXCL7, myeloperoxidase (MPO), MPO-DNA complex and S100A8/A9 were measured by ELISA in plasma samples of patients with cSVD presenting with mild vascular cognitive impairment (mVCI, n = 36) or lacunar stroke (Laci, n = 44), and controls (n = 38). To determine the relevance of these ELISA markers compared with patient- and MRI-based characteristics, all characteristics were entered into three machine learning models. Among the ELISA markers measured, MPO levels were significantly elevated in patients with cSVD (48.3 (27.8-80.1, interquartile range) ng/mL) compared with controls (32.2 (19.6-47.4) ng/mL, P = 0.023), particularly in the Laci group (56.8 (33.3-84.7) ng/mL, P = 0.004). Regularized logistic regression and random forest algorithms returned MPO levels as an important feature in the detection and prediction of cSVD. Of note, logistic regression and random forest analysis also highlighted levels of CXCL4, CXCL7, MPO-DNA and S100A8/A9 as features associated with cSVD. Taken together, the neutrophil activation marker MPO is elevated in patients with Laci and machine learning indicates platelet and neutrophil markers as interesting molecules for future investigation. SHORTENED ABSTRACT: Cerebral small vessel disease (cSVD) is a major cause of cognitive decline and stroke. We aimed to identify potential novel biomarkers for cSVD and to obtain new insights into its pathophysiology. Levels of markers reflecting neutrophil activation, neutrophil extracellular trap (NET) formation, platelet activation and vascular inflammation were measured in plasma samples of patients with cSVD, and controls. Only myeloperoxidase (MPO) levels were significantly altered. Regularized logistic regression and random forest algorithms returned MPO levels as an important feature in the detection and prediction of cSVD and highlighted platelet- and NET markers as cSVD associated.


Subject(s)
Cerebral Small Vessel Diseases , Peroxidase , Artificial Intelligence , Biomarkers , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , DNA , Humans , Inflammation/complications , Neutrophils , Platelet Activation
2.
J Magn Reson Imaging ; 51(4): 1170-1180, 2020 04.
Article in English | MEDLINE | ID: mdl-31486211

ABSTRACT

BACKGROUND: Cerebral intravoxel incoherent motion (IVIM) imaging assumes two components. However, more compartments are likely present in pathologic tissue. We hypothesized that spectral analysis using a nonnegative least-squares (NNLS) approach can detect an additional, intermediate diffusion component, distinct from the parenchymal and microvascular components, in lesion-prone regions. PURPOSE: To investigate the presence of this intermediate diffusion component and its relation with cerebral small vessel disease (cSVD)-related lesions. STUDY TYPE: Prospective cross-sectional study. POPULATION: Patients with cSVD (n = 69, median age 69.8) and controls (n = 39, median age 68.9). FIELD STRENGTH/SEQUENCE: Whole-brain inversion recovery IVIM acquisition at 3.0T. ASSESSMENT: Enlarged perivascular spaces (PVS) were rated by three raters. White matter hyperintensities (WMH) were identified on a fluid attenuated inversion recovery (FLAIR) image using a semiautomated algorithm. STATISTICAL TESTS: Relations between IVIM measures and cSVD-related lesions were studied using the Spearman's rank order correlation. RESULTS: NNLS yielded diffusion spectra from which the intermediate volume fraction fint was apparent between parenchymal diffusion and microvasular pseudodiffusion. WMH volume and the extent of MRI-visible enlarged PVS in the basal ganglia (BG) and centrum semiovale (CSO) were correlated with fint in the WMHs, BG, and CSO, respectively. fint was 4.2 ± 1.7%, 7.0 ± 4.1% and 13.6 ± 7.7% in BG and 3.9 ± 1.3%, 4.4 ± 1.4% and 4.5 ± 1.2% in CSO for the groups with low, moderate, and high number of enlarged PVS, respectively, and increased with the extent of enlarged PVS (BG: r = 0.49, P < 0.01; CSO: r = 0.23, P = 0.02). fint in the WMHs was 27.1 ± 13.1%, and increased with the WMH volume (r = 0.57, P < 0.01). DATA CONCLUSION: We revealed the presence of an intermediate diffusion component in lesion-prone regions of cSVD and demonstrated its relation with enlarged PVS and WMHs. In tissue with these lesions, tissue degeneration or perivascular edema can lead to more freely diffusing interstitial fluid contributing to fint . LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1170-1180.


Subject(s)
Cerebral Small Vessel Diseases , Aged , Cerebral Small Vessel Diseases/diagnostic imaging , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging , Motion , Prospective Studies
3.
Neurology ; 92(15): e1669-e1677, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30867275

ABSTRACT

OBJECTIVE: To investigate the link between blood-brain-barrier (BBB) permeability and cerebral blood flow (CBF) and the relation with white matter hyperintensities (WMH) in cerebral small vessel disease (cSVD). METHODS: Twenty-seven patients with cSVD received dynamic susceptibility contrast and dynamic contrast-enhanced MRI to determine CBF and BBB permeability (expressed as leakage rate and volume), respectively. Structural MRI were segmented into normal-appearing white matter (NAWM) and WMH, for which a perilesional zone was defined. In these regions, we investigated the BBB permeability, CBF, and their relation using Pearson correlation r. RESULTS: We found a decrease in CBF of 2.2 mL/min/100 g (p < 0.01) and an increase in leakage volume of 0.7% (p < 0.01) per mm closer to the WMH in the perilesional zones. Lower CBF values correlated with higher leakage measures in the NAWM and WMH (-0.53 < r < -0.40, p < 0.05). This relation was also observed in the perilesional zones, which became stronger in the proximity of WMH (p = 0.03). CONCLUSION: BBB impairment and hypoperfusion appear in the WMH and NAWM, which increase in the proximity of the WMH, and are linked. Both BBB and CBF are regulated in the neurovascular unit (NVU) and the observed link might be due to the physiologic regulation mechanism of the NVU. This link may suggest an early overall deterioration of this unit.


Subject(s)
Blood-Brain Barrier/pathology , Cerebral Small Vessel Diseases/pathology , Cerebrovascular Disorders/pathology , Aged , Blood-Brain Barrier/diagnostic imaging , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebrospinal Fluid Leak/pathology , Cerebrovascular Circulation , Cerebrovascular Disorders/diagnostic imaging , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging , Male , Middle Aged , White Matter/diagnostic imaging
4.
Brain Imaging Behav ; 13(2): 389-395, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29572621

ABSTRACT

Blood-brain barrier (BBB) leakage increases with age and is involved in the pathophysiology of cerebral small vessel disease (cSVD). We examined the relationship between BBB leakage and white matter hyperintensity (WMH) volume and cognition, in cSVD patients and healthy controls. Seventy-seven patients with clinically overt cSVD and thirty-nine age matched healthy controls underwent dynamic contract-enhanced and structural brain MRI and neuropsychological assessment. We quantified BBB leakage volume and rate in normal appearing white matter (NAWM), WMH and cortical grey matter (CGM). Larger leakage volume and lower leakage rate in WMH were associated with larger WMH volume in cSVD but not in controls. Higher leakage rate in NAWM was associated with lower scores on executive function and information processing speed in healthy controls, whereas no relation with cognition was found in cSVD patients. Our findings support the involvement of BBB leakage in cSVD and aging. They also suggest that the mechanism of cognitive dysfunction in cSVD is more complex and multifactorial in cSVD compared with normal aging.


Subject(s)
Aging/metabolism , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/physiopathology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , White Matter/diagnostic imaging , White Matter/physiopathology , Aged , Female , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Humans , Magnetic Resonance Imaging , Male
5.
J Magn Reson Imaging ; 46(1): 159-166, 2017 07.
Article in English | MEDLINE | ID: mdl-28160347

ABSTRACT

PURPOSE: Increased blood-brain barrier (BBB) permeability has been shown to play a significant role in the pathophysiology of cerebrovascular disease and it may provide an early functional marker of progression or treatment effects. The aim of the study was to investigate the test-retest reproducibility and influencing factors of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in measuring subtle leakage in patients with cerebrovascular disease. MATERIAL AND METHODS: DCE-MRI (3T) was performed on two separate days in 16 patients (age 66 ± 9 years) with cerebrovascular disease, prospectively. The leakage rate was quantified for white matter (WM) and gray matter (GM) using the Patlak graphical approach with individual vascular input functions (VIFs). Furthermore, the influence of session-averaged VIFs, the average of the VIFs obtained on two days, and shorter scan times (range 5-25 minutes) on the reproducibility were evaluated in WM and GM. RESULTS: Coefficients of variation (CV) ≤14.4% (WM and GM), intraclass correlation coefficients (ICCs) of 0.77 (WM) and 0.49 (GM), were observed for the leakage rate. Session-averaged VIFs hardly affected these results (CV ≤13.4%). The repeatability coefficients (RCs) of the leakage rate decreased from 2.7·10-3 to 0.4·10-3 min-1 in WM (P < 0.01) and 4.4·10-3 to 0.9·10-3 min-1 in GM (P < 0.01) with increasing scan time (range 5-25 minutes). CONCLUSION: Based on the moderate CVs and moderate-to-excellent ICCs, we demonstrate that measuring subtle BBB leakage using DCE-MRI is moderate-to-excellent reproducible. Longer scan times improve the reproducibility. The provided RCs at various scan times may assist future clinical studies investigating BBB leakage using DCE-MRI. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:159-166.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebrovascular Disorders/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Aged , Capillary Permeability , Cerebral Hemorrhage/etiology , Cerebrovascular Disorders/complications , Contrast Media , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
6.
Neuroimage Clin ; 14: 216-221, 2017.
Article in English | MEDLINE | ID: mdl-28180080

ABSTRACT

INTRODUCTION: Cerebral small vessel disease (cSVD) is associated with microvascular and parenchymal alterations. Intravoxel incoherent motion (IVIM) MRI has been proposed to simultaneously measure both the microvascular perfusion and parenchymal diffusivity. This study aimed to evaluate the application of IVIM in cSVD to assess the microvasculature and parenchymal microstructure. METHODS: Seventy-three patients with cSVD (age 70 ± 11 y) and thirty-nine controls (age 69 ± 12 y) underwent IVIM imaging (3T). Group differences of the perfusion volume fraction f and the parenchymal diffusivity D were investigated using multivariable linear regression accounted for age, sex and cardiovascular factors. To examine the relation between the IVIM measures and the disease severity on structural MRI, white matter hyperintensity (WMH) load served as surrogate measure of the disease severity. RESULTS: Patients had a larger f (p < 0.024) in the normal appearing white matter (NAWM) than controls. Higher D (p < 0.031) was also observed for patients compared with controls in the NAWM and grey matter. Both f (p < 0.024) and D (p < 0.001) in the NAWM and grey matter increased with WMH load. CONCLUSIONS: The increased diffusivity reflects the predicted microstructural tissue impairment in cSVD. Unexpectedly, an increased perfusion volume fraction was observed in patients. Future studies are needed to reveal the precise nature of the increased perfusion volume fraction. IVIM imaging showed that the increases of f and D in cSVD were both related to disease severity, which suggests the potential of IVIM imaging to provide a surrogate marker for the progression of cSVD.


Subject(s)
Cerebral Small Vessel Diseases/diagnostic imaging , Microvessels/diagnostic imaging , Parenchymal Tissue/diagnostic imaging , Aged , Aged, 80 and over , Diffusion Magnetic Resonance Imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motion , Perfusion , Retrospective Studies , White Matter/diagnostic imaging
7.
Stroke ; 48(3): 658-663, 2017 03.
Article in English | MEDLINE | ID: mdl-28196940

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral small vessel disease (SVD) is associated with cognitive impairment. This may be because of decreased microstructural integrity and microvascular perfusion, but data on these relationships are scarce. We determined the relationship between cognition and microvascular perfusion and microstructural integrity in SVD patients, using intravoxel incoherent motion imaging-a diffusion-weighted magnetic resonance imaging technique designed to determine microvascular perfusion and microstructural integrity simultaneously. METHODS: Seventy-three patients with SVD and 39 controls underwent intravoxel incoherent motion imaging and neuropsychological assessment. Parenchymal diffusivity D (a surrogate measure of microstructural integrity) and perfusion-related measure fD* were calculated for the normal appearing white matter, white matter hyperintensities, and cortical gray matter. The associations between cognitive performance and D and fD* were determined. RESULTS: In SVD patients, multivariable analysis showed that lower fD* in the normal appearing white matter and cortical gray matter was associated with lower overall cognition (P=0.03 and P=0.002, respectively), lower executive function (P=0.04 and P=0.01, respectively), and lower information-processing speed (P=0.04 and P=0.01, respectively). D was not associated with cognitive function. In controls, no association was found between D, fD*, and cognition. CONCLUSIONS: In SVD patients, lower cognitive performance is associated with lower microvascular perfusion in the normal appearing white matter and cortical gray matter. Our results support recent findings that both cortical gray matter and normal appearing white matter perfusion may play a role in the pathophysiology of cognitive dysfunction in SVD. CLINICAL TRIAL REGISTRATION: URL: http://www.trialregister.nl. Unique identifier: NTR3786.


Subject(s)
Cerebral Small Vessel Diseases/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Microvessels/diagnostic imaging , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Cerebral Small Vessel Diseases/physiopathology , Cognitive Dysfunction/physiopathology , Female , Gray Matter/blood supply , Humans , Male , Middle Aged , White Matter/blood supply
8.
Neurology ; 88(5): 426-432, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28031395

ABSTRACT

OBJECTIVE: As blood-brain barrier (BBB) dysfunction may occur in normal aging but may also play a pivotal role in the pathophysiology of cerebral small vessel disease (cSVD), we used dynamic contrast-enhanced (DCE)-MRI to quantify the rate and the spatial extent of BBB leakage in patients with cSVD and age- and sex-matched controls to discern cSVD-related BBB leakage from aging-related leakage. METHODS: We performed structural brain MRI and DCE-MRI in 80 patients with clinically overt cSVD and 40 age- and sex-matched controls. Using the Patlak pharmacokinetic model, we calculated the leakage rate. The mean leakage rate and relative leakage volume were calculated using noise-corrected histogram analysis. Leakage rate and leakage volume were compared between patients with cSVD and controls for the normal-appearing white matter (NAWM), white matter hyperintensities (WMH), cortical gray matter (CGM), and deep gray matter. RESULTS: Multivariable linear regression analyses adjusting for age, sex, and cardiovascular risk factors showed that the leakage volume of the NAWM, WMH, and CGM was significantly larger in patients with cSVD compared with controls. No significant difference was found for leakage rate in any of the tissue regions. CONCLUSION: We demonstrated a larger tissue volume with subtle BBB leakage in patients with cSVD than in controls. This was shown in the NAWM, WMH, and CGM, supporting the generalized nature of cSVD.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/physiopathology , Capillary Permeability/physiology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , Aged , Aging/metabolism , Cardiovascular Diseases/physiopathology , Contrast Media , Female , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Humans , Image Interpretation, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Multivariate Analysis , Plasma Volume/physiology , Severity of Illness Index , Sex Characteristics , White Matter/diagnostic imaging , White Matter/physiopathology
9.
Aging Cell ; 9(3): 313-26, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20121722

ABSTRACT

A main neurogenic niche in the adult human brain is the subventricular zone (SVZ). Recent data suggest that the progenitors that are born in the human SVZ migrate via the rostral migratory stream (RMS) towards the olfactory bulb (OB), similar to what has been observed in other mammals. A subpopulation of astrocytes in the SVZ specifically expresses an assembly-compromised isoform of the intermediate filament protein glial fibrillary acidic protein (GFAP-delta). To further define the phenotype of these GFAP-delta expressing cells and to determine whether these cells are present throughout the human subventricular neurogenic system, we analysed SVZ, RMS and OB sections of 14 aged brain donors (ages 74-93). GFAP-delta was expressed in the SVZ along the ventricle, in the RMS and in the OB. The GFAP-delta cells in the SVZ co-expressed the neural stem cell (NSC) marker nestin and the cell proliferation markers proliferating cell nuclear antigen (PCNA) and Mcm2. Furthermore, BrdU retention was found in GFAP-delta positive cells in the SVZ. In the RMS, GFAP-delta was expressed in the glial net surrounding the neuroblasts. In the OB, GFAP-delta positive cells co-expressed PCNA. We also showed that GFAP-delta cells are present in neurosphere cultures that were derived from SVZ precursors, isolated postmortem from four brain donors (ages 63-91). Taken together, our findings show that GFAP-delta is expressed in an astrocytic subpopulation in the SVZ, the RMS and the OB. Importantly, we provide the first evidence that GFAP-delta is specifically expressed in longterm quiescent cells in the human SVZ, which are reminiscent of NSCs.


Subject(s)
Brain/metabolism , Glial Fibrillary Acidic Protein/metabolism , Aged , Aged, 80 and over , Brain/cytology , Cell Differentiation , Cell Proliferation , Humans , Middle Aged , Stem Cells/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...