Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Adv Sci (Weinh) ; 9(5): e2103838, 2022 02.
Article in English | MEDLINE | ID: mdl-34923767

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) possess the remarkable ability to regenerate the whole blood system in response to ablated stress demands. Delineating the mechanisms that maintain HSPCs during regenerative stresses is increasingly important. Here, it is shown that Hemgn is significantly induced by hematopoietic stresses including irradiation and bone marrow transplantation (BMT). Hemgn deficiency does not disturb steady-state hematopoiesis in young mice. Hemgn-/- HSPCs display defective engraftment activity during BMT with reduced homing and survival and increased apoptosis. Transcriptome profiling analysis reveals that upregulated genes in transplanted Hemgn-/- HSPCs are enriched for gene sets related to interferon gamma (IFN-γ) signaling. Hemgn-/- HSPCs show enhanced responses to IFN-γ treatment and increased aging over time. Blocking IFN-γ signaling in irradiated recipients either pharmacologically or genetically rescues Hemgn-/- HSPCs engraftment defect. Mechanistical studies reveal that Hemgn deficiency sustain nuclear Stat1 tyrosine phosphorylation via suppressing T-cell protein tyrosine phosphatase TC45 activity. Spermidine, a selective activator of TC45, rescues exacerbated phenotype of HSPCs in IFN-γ-treated Hemgn-/- mice. Collectively, these results identify that Hemgn is a critical regulator for successful engraftment and reconstitution of HSPCs in mice through negatively regulating IFN-γ signaling. Targeted Hemgn may be used to improve conditioning regimens and engraftment during HSPCs transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interferon-gamma , Animals , Hematopoiesis , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Interferon-gamma/metabolism , Mice , Transplantation Conditioning
2.
Yi Chuan ; 35(7): 903-12, 2013 Jul.
Article in Chinese | MEDLINE | ID: mdl-23853362

ABSTRACT

Three maize (Zea mays L.) inbred lines 08-641, RP125, and 18-599 were carried into cosmic space by recoverable satellite "Shijian 8". Some mutant lines were selected from SP4 and combinations were made according to the NC II genetic design. The materials were planted in Sichuan and Yunnan separately to analyze combining ability based on the incomplete diallel cross design. The results showed that space flight affected the combining ability of mutant lines, and the GCA value of mutant lines were different in two kinds of environmental condition. The GCA of ear length, row per ear, kernel per row, and yield per plant for the mutant line C03 showed substantial increase compared with the control 08-641; the GCA of row per ear, kernel per row, and other yield component traits for the mutant lines C01 and C04 were significantly higher than those of the control. The SCA of yield and yield components for the combinations derived from the mutant lines C06, R18, and S22 were higher than others. These results laid a material foundation for maize breeding and provided some important references for improving and utilizing the mutant lines.


Subject(s)
Space Flight , Zea mays/genetics , Crosses, Genetic , Genotype , Inbreeding , Phenotype , Zea mays/growth & development
3.
Yi Chuan ; 33(2): 175-81, 2011 Feb.
Article in Chinese | MEDLINE | ID: mdl-21377975

ABSTRACT

Three maize male sterile mutants were obtained from the offsprings of two maize inbred lines 18-599 and 08-641, which were carried into space by the Shijian 8 Satellite. The stability of male sterile expression was observed in different locations, years, and seasons. In order to analyze the genetic characteristic of male sterility, testcross, backcross and reciprocal cross were made with these male sterile plants. The results showed that the male sterility character was stable in different locations, years, and seasons, and the sterility was inheritable. Because the maintainer lines and restorer lines for these sterile materials were found, and there was no male sterile plant separated among the reciprocal cross F2. Thus, we concluded that these mutants could be cytoplasmic male sterile. Combining the results of male fertility restoration test and PCR analysis, we could conclude that the three male sterile mutants were classified into the CMS-C type in maize. Owing to their difference in fertility restoration, these mutants may belong to different subgroups of CMS-C type. The discovery of the three male sterile mutants increased the genetic diversity of CMS-C type, improved the tolerance to Bipolaris maydis, and laid a foundation for extensive application of CMS-C in seeds production.


Subject(s)
Cytoplasm/physiology , Mutation , Plant Infertility , Space Flight , Zea mays/genetics , Breeding , Cytoplasm/genetics , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...