Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4732, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830844

ABSTRACT

Parallel tidal channel systems, characterized by commonly cross-shore orientation and regular spacing, represent a distinct class of tidal channel networks in coastal environments worldwide. Intriguingly, these cross-shore oriented channel systems can develop in environments dominated by alongshore tidal currents, for which the mechanisms remain elusive. Here, we combine remote sensing imagery analysis and morphodynamic simulations to demonstrate that the deflection of alongshore tidal currents at transitions in bed elevation determines the characteristic orientation of the parallel tidal channels. Numerical results reveal that sharp changes in bed elevation lead to nearly 90-degree intersection angles, while smoother transitions in bed profiles result in less perpendicular channel alignments. These findings shed light on the potential manipulation of tidal channel patterns in coastal wetlands, thus equipping coastal managers with a broader range of strategies for the sustainable management of these vital ecosystems in the face of climate change and sea level rise.

2.
Ecotoxicol Environ Saf ; 258: 114955, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37121076

ABSTRACT

The effect of mean flow velocity on phosphorus (P) partitioning between water and sediment has received much attention in recent decades. However, the impact of turbulence on the efficiency and capability of sediment adsorbing and desorbing dissolved inorganic phosphorus (DIP) is still unclear. A series of contrasting experiments on the sediment sorption and desorption of DIP with the flow turbulence kinetic energy (TKE) ranging from 1.95 to 2.93 pa have been conducted. It was found that the adsorbed P onto unit mass of sediment increases with the increase in TKE. It is because an increase in TKE results in a rise in the effective adsorption capacity of sediment (bm) by 20-30% during the adsorption process. The bm shows the maximum rise from 0.18 to 0.25 mg/g when TKE increases from 1.95 to 2.93 pa with a fixed sediment concentration of 0.5 g/L. To account for the direct effect of TKE on P adsorption, the Langmuir model is modified by introducing a newly defined coefficient (fA-TKE). The fA-TKE shows a good linear relationship with TKE. Comparison between the modified model and the classic model shows that the amount of adsorbed P could be overestimated by over 50% if the direct effect of turbulence intensity is ignored. The experimental data show that the increase in TKE also enhances the desorption process, with the degree of P desorption (Ddes) increased by 44%. The relation between Ddes and TKE can be well represented using a logarithmic function to quantify the direct effect of turbulence intensity on desorption of P.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Geologic Sediments , Adsorption , Water , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 539: 566-575, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26386447

ABSTRACT

The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars.


Subject(s)
Ammonium Compounds/chemistry , Cadmium/chemistry , Charcoal/chemistry , Environmental Pollutants/chemistry , Environmental Restoration and Remediation/methods , Adsorption , Models, Chemical , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL