Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Food Chem ; 450: 139331, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38621310

ABSTRACT

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Subject(s)
Escherichia coli O157 , Nanoparticles , Silicon , beta-Galactosidase , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Nanoparticles/chemistry , Silicon/chemistry , Silicon/pharmacology , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Microbial Sensitivity Tests , Food Contamination/analysis , Colorimetry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Microbiology
2.
Se Pu ; 42(3): 256-263, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503702

ABSTRACT

Herbicides play an important role in preventing and controlling weeds and harmful plants and are increasingly used in agriculture, forestry, landscaping, and other fields. However, the effective utilization rate of herbicides is only 20%-30%, and most herbicides enter the atmosphere, soil, sediment, and water environments through drift, leaching, and runoff after field application. Herbicide residues in the environment pose potential risks to ecological safety and human health. Therefore, establishing analytical methods to determine herbicide residues in environmental samples is of great importance. In this study, an analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive electrospray ionization mode (ESI+) was developed for the determination of isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water. The instrumental detection parameters, including electrospray ionization mode, mobile phase, and chromatographic column, were optimized. The mobile phases were methanol (A) and 0.1% formic acid aqueous solution (B). Gradient elution was performed as follows: 0-1.0 min, 60%A; 1.0-2.0 min, 60%A-90%A; 2.0-3.0 min, 90%A; 3.0-4.0 min, 90%A-60%A; 4.0-5.0 min, 60%A. The samples were salted after extraction with acetonitrile and cleaned using a C18 solid-phase extraction column. Different solid-phase extraction columns and leaching conditions were investigated during sample pretreatment. Working curves in the neat solvent and matrix were constructed by plotting the measured peak areas as a function of the concentrations of the analytes in the neat solvent and matrix. Good linearities were found for isoxaflutole, metazachlor, and saflufenacil in the solvent and matrix-matched standards in the range of 0.0005-0.02 mg/L, with r≥0.9961. The matrix effects of the three herbicides in soil, sediment, and water ranged from -10.1% to 16.5%. The limits of detection (LODs, S/N=3) for isoxaflutole, metazachlor, and saflufenacil were 0.05, 0.01, and 0.02 µg/kg, respectively. The limits of quantification (LOQs, S/N=10) for isoxaflutole, metazachlor, and saflufenacil were 0.2, 0.05, and 0.05 µg/kg, respectively. The herbicides were applied to soil, sediment, and water at spiked levels of 0.005, 0.1, and 2.0 mg/kg, respectively. The average recoveries for isoxaflutole, metazachlor, and saflufenacil in soil, sediment, and water were in the ranges of 77.2%-101.9%, 77.9%-105.1%, and 80.8%-107.1%, respectively. The RSDs for isoxaflutole, metazachlor, and saflufenacil were in the ranges of 1.4%-12.8%, 1.2%-7.7%, and 1.5%-11.5%, respectively. The established method was used to analyze actual samples collected from four different sites in Zhejiang Province (Xiaoshan, Taizhou, Dongyang, and Yuhang) and one site in Heilongjiang (Jiamusi). The proposed method is simple, rapid, accurate, stable, and highly practical. It can be used to detect isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water and provides a reference for monitoring the residual pollution and environmental behavior of herbicides.


Subject(s)
Acetamides , Herbicides , Pyrimidinones , Sulfonamides , Humans , Chromatography, Liquid , Herbicides/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Water/analysis , Soil/chemistry , Solvents/analysis , Solid Phase Extraction
3.
J Environ Sci Health B ; 59(4): 152-159, 2024.
Article in English | MEDLINE | ID: mdl-38347689

ABSTRACT

Picoxystrobin is a systemic fungicide widely used on potato, citrus fruit, and Dendrobium officinale. To provide information for the risk assessment of potato, citrus, and Dendrobium officinale, field experiments combined with QuEChERS and HPLC-MS/MS were performed to detect picoxystrobin. Picoxystrobin had good linearity (R2 > 0.99), the average recovery rate was 75 - 102%, and the relative standard deviation was 1 - 11%. Picoxystrobin was utilized as the test agent in field experiments, and samples were evaluated and analyzed at various times after the final application utilizing random sampling. The results showed that picoxystrobin residuals in potato and citrus (orange meat) were ˂ 0.01 mg kg-1, whereas those in citrus whole fruit, D. officinale (fresh), and D. officinale (dried) were < 0.05 - 0.084, 0.16 - 3.82, and 0.34 - 9.05 mg kg-1, respectively. Based on these results, both the acute risk quotient (2.77%) and chronic risk quotient (8.7%) were ˂100%, and the dietary risk assessment indicated that the intake of picoxystrobin residues in potato, citrus fruit, and D. officinale did not pose a health risk. This study can guide the reasonable use of picoxystrobin in potato, citrus fruit, and D. officinale.


Subject(s)
Citrus , Dendrobium , Solanum tuberosum , Strobilurins , Tandem Mass Spectrometry/methods , Risk Assessment
4.
Environ Pollut ; 346: 123601, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38373624

ABSTRACT

The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.


Subject(s)
Acrylonitrile/analogs & derivatives , Fragaria , Pesticides , Bees , Animals , Pyrazoles
5.
Anal Chim Acta ; 1288: 342140, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220275

ABSTRACT

Ultraviolet (UV) light and foodborne pathogenic bacteriais are an important risk to the environment's safety. They endanger human health, and also lead to outbreaks of infectious disease, posing great threats to global public health security, national economy, and social stability. The appearance of carbon dot (CD) nanozymes offers a new perspective to solve the problems of detection of UV light and pathogenic bacteria in environment. This paper reports the preparation of CDs with dual enzyme-like activities (superoxide dismutase activity and UV-induced oxidase activity). The product can catalyze the oxidation of the substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) under UV light (365 nm) to achieve rapid color development. Based on the excellent fluorescence properties of CDs, the colorimetric-fluorescence dual-channel real-time detection of UVA dose was realized, the mechanism underlying the catalytic oxidation of TMB by UV-induced oxidase CDs was also investigated. Furthermore, a portable CDs-TMB-PA hydrogel was prepared which could realize the real-time monitoring of UV in outdoor environment with the assistance of smartphone. Based on the pH dependency of the CD nanozymes and specific glycolytic response of the pathogenic bacteria Escherichia coli (E. coli) O157:H7, the direct, simple, quick, and sensitive typing and detection have been realized. This research offers new perspectives for studying CD nanozymes and their applications in UV and bacterial detection, demonstrating the remarkable potential of CD nanozymes in detecting environmental hazards.


Subject(s)
Escherichia coli O157 , Oxidoreductases , Humans , Carbon , Catalysis , Bacteria , Bacterial Typing Techniques
6.
Biomed Chromatogr ; 38(2): e5779, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050189

ABSTRACT

To clarify the residue behavior and possible dietary risk of abamectin in fresh corn, bitter melon, and Fritillaria, a method was developed for the simultaneous determination of abamectin residues in fresh corn, bitter melon, and Fritillaria by QuEChERS (quick, easy, cheap, effective, rugged, safe) ultra-performance liquid chromatography-tandem mass spectrometry. The mean recovery of abamectin in fresh corn, bitter melon, and Fritillaria was 86.48%-107.80%, and the relative standard deviation was 2.07%-10.12%. The detection rates of abamectin residues in fresh corn, bitter melon, and Fritillaria were 62.50%, 87.50%, and 80.00%, respectively. The residues of abamectin in fresh corn, bitter melon, and Fritillaria were not more than 0.020, 0.019, and 0.087 mg/kg, respectively. Based on these results, dietary risk assessment showed that the risk content of abamectin residues in long- and short-term dietary exposure for Chinese consumers was 61.57% and 0.41%-1.11%, respectively, indicating that abamectin in fresh corn, bitter melon, and Fritillaria in the market would not pose a significant risk to consumers.


Subject(s)
Fritillaria , Ivermectin/analogs & derivatives , Momordica charantia , Pesticide Residues , Momordica charantia/chemistry , Zea mays , Risk Assessment , Pesticide Residues/analysis
7.
Chemosphere ; 349: 140747, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000556

ABSTRACT

The environmental risks of trifloxystrobin (TR) have drawn attention because of its multiplex toxicity on aquatic organisms, but few studies have paid close attention to its chronic toxicity at environmental concentrations. In present study, histopathology, metabolomics and transcriptomics were comprehensively performed to investigate the toxic effects and biological responses on adult zebrafish after exposure to 0.1, 1 and 10 µg/L TR for 21 d. Results demonstrated long-term exposure of TR affected zebrafish liver, ovary and heart development. Metabolomics revealed 0.1, 1 and 10 µg/L TR simultaneously decreased the carbohydrates enriched in glucose metabolism and ABC transporters pathways, such as glycogen, lactose, lactulose, maltose, maltotriose, d-trehalose, while 1 µg/L and 10 µg/L TR significantly increased many metabolites related to glycerophospholipid and sphingolipid metabolism in zebrafish liver. Transcriptomics showed TR activated the transcription of the Abcb4, Abcb5 and Abcb11 involved in ABC transporters, Pck1, Pfk, Hk, Gyg1a and Pygma related to glucose metabolism, as well as the Lpcat1, Lpcat4, Gpat2, Cers and Sgms in glycerophospholipid and sphingolipid metabolism. Results further demonstrated high concentration of TR strongly affected the DNA repair system, while low dose of TR caused pronounced effects on cardiomyocytes and oocyte regulation pathways at transcriptional levels. The results indicated the abnormal liver, gonad and heart development caused by TR might be ascribed to the disturbance of carbohydrates and lipid metabolism mediating by the Abcb4, Abcb5 and Abcb11 ABC transporters, and long-term exposure of environmental concentration of TR was sufficient to affect zebrafish normal metabolism and development.


Subject(s)
ATP-Binding Cassette Transporters , Zebrafish , Animals , Female , ATP-Binding Cassette Transporters/metabolism , Zebrafish/metabolism , Lipid Metabolism , Glycerophospholipids/metabolism , Glucose/metabolism , Sphingolipids/metabolism
8.
J Hazard Mater ; 464: 132954, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37972496

ABSTRACT

Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.


Subject(s)
Hydrocarbons, Chlorinated , Triticum , Humans , Paraffin/chemistry , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Biological Transport , Soil/chemistry , China
9.
Plants (Basel) ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005801

ABSTRACT

Pymetrozine is used on potato (S. tuberosum) and Chrysanthemum morifolium (C. morifolium) to obtain greater yield and quality. However, pesticide use carries the potential for residues to remain and be detected on harvested crops. Therefore, the aim of this study was to estimate pesticide residues in S. tuberosum and C. morifolium products that are commercially available for human consumption and to assess the associated dietary risks. For this study, a total of 340 samples (200 S. tuberosum samples and 140 C. morifolium samples) were collected randomly from supermarkets and farmer's markets. Residues of pymetrozine in S. tuberosum and C. morifolium were detected by using an established and validated QuECHERS-HPLC-MS / MS method, while a dietary risk assessment of pymetrozine in S. tuberosum and C. morifolium was performed using these data. The detection rates of pymetrozine in S. tuberosum and C. morifolium samples were 92.31% and 98.17%, respectively, with residues not more than 0.036 and 0.024 mg/kg, respectively. Based on these results, the dietary risk assessment indicated that the intake of pymetrozine residues in S. tuberosum and C. morifolium does not pose a health risk. This work improved our understanding of the potential exposure risk of pymetrozine in S. tuberosum and C. morifolium.

10.
Environ Sci Pollut Res Int ; 30(60): 125907-125914, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008836

ABSTRACT

Cyclaniliprole, a novel diamide insecticide, can successfully control Spodoptera litura (Fabricius, 1775) in cabbage. Understanding the residual level of cyclaniliprole in crops and the risk related to its dietary intake is imperative for safe application. Here, we established a simplified, sensitive method for simultaneous analysis of cyclaniliprole and its metabolite NK-1375 (3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide) in cabbage by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate their dissipation behavior and residual characteristics. Cyclaniliprole showed rapid dissipation in cabbage and had a half-life of 1.8-2.7 days. The highest residue of total cyclaniliprole (sum of cyclaniliprole and NK-1375) in cabbage from different pre-harvest intervals (3 and 5 days) was 0.25 mg/kg. Our results confirmed the generally low dietary risk quotient of cyclaniliprole (0.243-1.036%) among different age and gender groups in China. Therefore, cyclaniliprole did not pose an unacceptable risk to consumers. This study contributes to setting cyclaniliprole maximum residue limit in cabbage by assessing its dissipation fate and food safety risks.


Subject(s)
Brassica , Pesticide Residues , Brassica/metabolism , Chromatography, Liquid , Pesticide Residues/analysis , Tandem Mass Spectrometry , Risk Assessment , Half-Life , China
11.
Foods ; 12(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37761046

ABSTRACT

In this study, the fate of two pesticides commonly used on cowpeas, thiamethoxam and pyraclostrobin, during the preparation of home-made pickled cowpeas was investigated using an improved QuEChERS method combined with UHPLC-MS/MS. Although pesticide residues were primarily distributed on cowpea samples, some were transferred to brine. The dissipation half-life of thiamethoxam on cowpea samples was significantly shorter than that of pyraclostrobin due to thiamethoxam's higher water solubility. Thiamethoxam demonstrated a half-life of 5.12 ± 0.66 days, whereas pyraclostrobin exhibited a longer half-life of 71.46 ± 7.87 days. In addition, the degradation half-lives of these two pesticides in the whole system (cowpea and brine) were 45.01 ± 4.99 and 70.51 ± 5.91 days, respectively. This result indicates that the pickling did not effectively promote the degradation of thiamethoxam and pyraclostrobin. The metabolite clothianidin of thiamethoxam was not produced throughout the pickling process, but the metabolite BF 500-3 of pyraclostrobin was detected in cowpea samples. The detection rates for thiamethoxam, pyraclostrobin, and BF 500-3 in the 20 market samples were 10%, 70%, and 45%, respectively. However, the risk quotient analysis indicated that the risk of dietary intake of thiamethoxam and pyraclostrobin in pickled cowpeas by Chinese consumers was negligible.

12.
Environ Sci Pollut Res Int ; 30(40): 91945-91955, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37481497

ABSTRACT

Bioaccessibility (BA) is a crucial factor for evaluating the absorption of pollutants in the human digestion system, which is of vital importance for risk assessment of pollutants via food intake. Multi-pesticides were detected in Dendrobium officinale Kimura et Migo (D. officinale), a popular dual-use plant with both botanical medicine and food applications. Nevertheless, the BA of pesticides in D. officinale remains unknown, restricting its market size. Herein, the BA of 19 pesticides with varying properties was evaluated by using an in vitro digestion model, showing BA values between 27.4 and 96.8%. The BA was controlled by the hydrophobicity and water solubility of pesticides, since the significant correlation between these two factors and BA values was observed. Moreover, co-ingested food ingredients could influence the BA, wherein the effect was significant for pesticides of logKow values no less than 3. Lipids enhanced the BA by 9-66%, whereas proteins or carbohydrates decreased BA values by 6-28%. In particular, considering the BA, the risk quotient values were reduced by 3-73%. Clearly, this work suggested that traditional risk assessment without considering the BA would seriously overestimate the actual risk of pesticides in food.


Subject(s)
Dendrobium , Environmental Pollutants , Pesticides , Humans , Food , Risk Assessment
13.
Ecotoxicol Environ Saf ; 263: 115272, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37473704

ABSTRACT

Pyriclobenzuron 1(PBU) is a novel molluscicide developed to control Pomacea canaliculate, and little information on its environmental fate has been published. In this study, the photolysis of PBU in an aqueous environment was simulated using a xenon lamp. Results showed that the photolysis of PBU in water followed first-order kinetics, exhibiting a t0.5 of 95.1 h and 83.6 h in Milli-Q water and river water, respectively. Two main photolysis products 2(PPs) were detected by HPLC-UV and identified by UPLC-Q/TOF MS, which were formed via the hydroxylation and photocatalytic hydro-dehalogenation of PBU, respectively. The initial relative abundance of photolysis product 1 3(PP-1) in Milli-Q water was 1.55 times higher than that in river water. PP-1 was detected at 26.5 % and 76.8 % of the maximum relative abundance in the river water and Milli-Q water after 720 h, respectively. Photolysis product 2 4(PP-2) was stable in water because of its weak hydrophilicity. The PP-2 detected after 720 h in Milli-Q water and river water was 93.7 % and 93.5 % of the maximum relative abundance, respectively. Finally, ECOSAR software was used to evaluate the acute aquatic toxicity of PBU and its PPs, revealing that the PPs had lower toxicity levels to non-target aquatic organisms.


Subject(s)
Sunlight , Water Pollutants, Chemical , Kinetics , Water , Photolysis , Water Pollutants, Chemical/toxicity
14.
Front Microbiol ; 14: 1161244, 2023.
Article in English | MEDLINE | ID: mdl-37125209

ABSTRACT

Preventing grain from fungi and subsequent mycotoxins contamination has attracted notable attention. Present study demonstrated the limonene-formulated product Wetcit®, might be a biocontrol agent and potential alternative to synthetic fungicides to control Fusarium graminearum growth and deoxynivalenol (DON) production. The limonene formulation exhibited antifungal activity against F. graminearum with the EC50 at 1.40 µl/ml, electron microscopy and staining analysis showed limonene formulation could significantly decrease the quantity, length and septa of conidia, caused hyphal break and shrink, damaged the structures of cell membrane, cell wall, vacuoles and organelles in the hypha. Further study revealed the antifungal and antitoxic mechanism of limonene formulation against F. graminearum, limonene formulation significantly inhibited the toxisome and DON formation, was associated with the down-regulation of trichothecenes biosynthesis genes expression and many energy metabolism pathways as well as the inhibition of lipid droplets, the disturbed energy homeostasis and intracellular structures might ultimately inhibit fungal growth and DON production. In addition, limonene formulation enhanced the antifungal activity of triazole fungicides tebuconazole and mefentrifluconazole against F. graminearum, indicated limonene formulation has valuable potential as a bio-alternative fungicide and eco-friendly compound preparation for the effective management of F. graminearum and DON contamination in agriculture.

15.
Front Microbiol ; 14: 1128853, 2023.
Article in English | MEDLINE | ID: mdl-37234547

ABSTRACT

Introduction: The composition and stability of soil fungal network are important for soil function, but the effect of trifluralin on network complexity and stability is not well understood. Methods: In this study, two agricultural soils were used to test the impact of trifluralin on a fungal network. The two soils were treated with trifluralin (0, 0.84, 8.4, and 84 mg kg-1) and kept in artificial weather boxes. Results and discussion: Under the impact of trifluralin, the fungal network nodes, edges, and average degrees were increased by 6-45, 134-392, and 0.169-1.468 in the two soils, respectively; however, the average path length was decreased by 0.304-0.70 in both soils. The keystone nodes were also changed in trifluralin treatments in the two soils. In the two soils, trifluralin treatments shared 219-285 nodes and 16-27 links with control treatments, and the network dissimilarity was 0.98-0.99. These results indicated that fungal network composition was significantly influenced. After trifluralin treatment, fungal network stability was increased. Specifically, the network robustness was increased by trifluralin with 0.002-0.009, and vulnerability was decreased by trifluralin with 0.0001-0.00032 in the two soils. Fungal network community functions were also impacted by trifluralin in both soils. Trifluralin significantly impacts the fungal network.

16.
J Hazard Mater ; 452: 131381, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37030221

ABSTRACT

Novel pesticides broflanilide (BFI), afidopyropen (ADP), and flupyradifurone (FPO) have been widely used and become the new organic pollutants. However, uptake, translocation and residual distribution of BFI, ADP, and FPO in plants remain unclear. Therefore, residues distribution, uptake, and translocation of BFI, ADP, and FPO were investigated in mustard field trials and hydroponic experiments. The field results indicated that the residues of BFI, ADP, and FPO were 0.001-1.87 mg/kg at 0-21 d and dissipated fast in mustard (half-lives=5.2-11.3 d). More than 66.5 % of FPO residues were distributed in the cell-soluble fractions because of their high hydrophilicity, while hydrophobic BFI and ADP were primarily stored in the cell walls and organelles. The hydroponic data showed that the foliar uptake rates of BFI, ADP, and FPO were weak (bioconcentration factors<1), but the root uptake rate was strong (bioconcentration factors>1). The upward and downward translations of BFI, ADP, and FPO were limited (translation factor<1). BFI and ADP are uptake by roots via apoplast pathway, and FPO is uptake via symplastic pathway. This study contributes to the understanding of the formation of pesticide residues in plants and provides a reference for safe application and risk assessment of BFI, ADP, and FPO.


Subject(s)
Mustard Plant , Pesticides , Mustard Plant/metabolism , Pesticides/chemistry , Plant Roots/metabolism
17.
Environ Sci Pollut Res Int ; 30(23): 64700-64709, 2023 May.
Article in English | MEDLINE | ID: mdl-37072589

ABSTRACT

In this study, fluopyram (FOR), acetamiprid (ATP), and chlorantraniliprole (CAP) were used individually or in combination at the maximum recommended dose in greenhouse strawberries to research the dissipation dynamics and dietary risks. A multi-residue analytical method for FOR, ATP, and CAP in strawberries using UPLC-MS/MS integrated with the QuEChERS approach was developed with strong linearity (R2 ≧ 0.9990), accuracy (recoveries of 82.62 to 107.79%), and precision (relative standard deviations of 0.58% to 12.73%). The limits of quantification were 0.01 mg kg-1. Field results showed that the half-lives of FOR, ATP and CAP in strawberry fruits were 11.6-12.4 days, 6.1-6.7 days, and 10.9-11.7 days, respectively. The half-lives of the three investigated pesticides showed no significant difference when used individually or in combination. A risk assessment indicated that the dietary intake risks of the three pesticides in grown strawberries were 0.0041 to 7.63% whether applied alone or in combination, which demonstrated that the dietary intake risks of the three pesticides in grown strawberries could be negligible for Chinese male and female consumers, and that even though pesticides were used in combination, there was less cause for concern about the safety. This paper serves as a guide for the safe use of FOR, ATP, and CAP on greenhouse strawberries.


Subject(s)
Fragaria , Pesticide Residues , Pesticides , Fragaria/chemistry , Pesticide Residues/analysis , Tandem Mass Spectrometry , Chromatography, Liquid , Risk Assessment , Adenosine Triphosphate
18.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985589

ABSTRACT

A simple and sensitive method for the simultaneous quantitation of prohexadione-Ca and uniconazole in the field experiment of Oryza sativa L. and Citrus reticulata Blanco was established using solid-phase extraction (SPE) with polymer anion exchange (PAX) and Florisil followed by LC-MS/MS. The method demonstrated excellent linearity (R2 > 0.999 0), trueness (recoveries between 95~105%), precision (CVs between 0.8~12%), sensitivity, and repeatability (LOQ of 0.05 and 0.01 mg/kg, respectively). Residue tests were conducted in the field at 12 representative sites in China, revealing final concentrations of prohexadione-Ca and uniconazole in brown rice, rice hull, and rice straw to be below 0.05 mg/kg, while in whole citrus fruit and citrus pulp, they were below 0.01 mg/kg. These were below the maximum residue limits specified in China. The chronic dietary risks of prohexadione-Ca and uniconazole in rice crops and citrus fruits were calculated to be 0.48% and 0.91%, respectively. Our research suggests that the chronic risk associated with the daily consumption of rice crops and citrus fruit at the recommended dosage is acceptable.


Subject(s)
Citrus , Oryza , Pesticide Residues , Chromatography, Liquid/methods , Oryza/chemistry , Tandem Mass Spectrometry/methods , Citrus/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Risk Assessment
19.
Environ Sci Process Impacts ; 24(12): 2465-2474, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36445190

ABSTRACT

The study of the adsorption properties of pesticides in soil is essential to assessing the risk of their pollution of nearby aquatic environments. To reveal the adsorption mechanisms of flupyradifurone (FPO) on soil, batch experiments in five different soils were carried out in this study. The adsorption kinetics and isotherms of FPO in five soils were well fitted by using several models (R2 = 0.922-0.998). It was found that both physical and chemical adsorption were included in the adsorption process of FPO in soils; the monolayer adsorption of FPO occurred with a non-uniform energy distribution on the soil surface, and the internal particle diffusion was not the only rate-controlling step. The adsorption coefficients calculated by using the Langmuir (KL) and Freundlich (KF) models were 0.0158-0.0982 and 1.053-9.798, respectively. In addition, the main factors affecting the adsorption of FPO in soil were investigated by stepwise regression fitted with the adsorption coefficient (Kd) and the soil properties. It was found that the organic carbon content was the main factor (R2 = 0.857, p < 0.05). Therefore, the organic carbon adsorption coefficients (Koc) were calculated. The results (1.0532-5.6529) indicated that FPO has a low affinity and high mobility in the soils, and may cause water environment pollution around the soil. Therefore, FPO should be used cautiously in paddy fields. These research findings were important for elucidating the sorption behaviour and transport of FPO in soil.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Adsorption , Soil Pollutants/analysis , Kinetics , Carbon/chemistry
20.
Chemosphere ; 309(Pt 2): 136739, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223820

ABSTRACT

Studies have shown that kresoxim-methyl (KM) and other strobilurin fungicides have toxic effects on aquatic organisms. However, the potential deleterious effects of kresoxim-methyl (KM) on adult zebrafish regarding the ecological risk of environmental concentration remain unclear. Here, the histology and untargeted metabonomics was used to investigate the adverse effect on female zebrafish after exposure to KM at environmental concentration, aquatic life benchmark and one-half LC50 of adult zebrafish. Results demonstrated KM affected zebrafish liver, ovary and intestine development, blurred the boundary between hepatocytes or caused hepatic vacuoles, increased the percentage of perinucleolar oocyte and cortical alveolus oocyte, decreased intestinal goblet cells and disturbed villus and wall integrity after 21 d exposure. Metabonomics showed different concentrations of KM simultaneously influenced the metabolites annotated to vitamin digestion and absorption, serotonergic synapse, retinol metabolism, ovarian steroidogenesis and arachidonic acid (AA) metabolism in zebrafish liver. Results showed the decreased triglyceride and cholesterol levels, as well as the metabolic alterations in amino acid, lipid, vitamin and retinol metabolism caused by KM, might disturb the energy supply for normal liver development and oocyte maturation. In addition, KM altered the transcription of Tdo2a, Tdo2b, Ido1, Cxcl8b, Cyp7a, Cyp11a, Cyp11b, Cyp17a, Cyp19a, Hsd3ß, Hsd17ß, Pla2, Ptgs2a and Ptgs2b, the level of TG, TC, MDA, IFN, IL6 and Ca2+, and the activity of CAT, SOD Ca2+-ATPase in zebrafish liver. Moreover, cytoscape analysis suggested the disturbed AA metabolism caused by KM, might interconnect multiple metabolic pathways to share implicated function in the regulation of oocyte maturation and immune response. Current study brought us closer to an incremental understanding of the toxic mechanism of KM on adult zebrafish, indicated there was crosstalk among different regulatory pathways to regulate the metabolic disorders and biologically hazardous effects induced by KM.


Subject(s)
Fungicides, Industrial , Water Pollutants, Chemical , Animals , Female , Strobilurins/toxicity , Zebrafish/metabolism , Fungicides, Industrial/toxicity , Cholesterol 7-alpha-Hydroxylase/metabolism , Arachidonic Acid/metabolism , Interleukin-6/metabolism , Vitamin A , Superoxide Dismutase/metabolism , Vitamins/metabolism , Amino Acids/metabolism , Triglycerides/metabolism , Adenosine Triphosphatases/metabolism , Cholesterol/metabolism , Phospholipases A2/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...