Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
ACS Appl Mater Interfaces ; 16(26): 33396-33403, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961570

ABSTRACT

Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g-1 at a current density of 0.2 C and maintains a capacity of 456 mA h g-1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g-1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode's potential as a highly viable option for LIBs.

2.
Angew Chem Int Ed Engl ; : e202410494, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007424

ABSTRACT

Anion-reinforced solvation structure favors the formation of inorganic-rich robust electrode-electrolyte interface, which endows fast ion transport and high strength modulus to enable improved electrochemical performance. However, such a unique solvation structure inevitably injures the ionic conductivity of electrolytes and limits the fast-charging performance. Herein, a trade-off in tuning anion-reinforced solvation structure and high ionic conductivity is realized by the entropy-assisted hybrid ester-ether electrolyte. Anion-reinforced solvation sheath with more anions occupying the inner Na+ shell is constructed by introducing the weakly coordinated ether tetrahydrofuran into the commonly used ester-based electrolyte, which merits the accelerated desolvation energy and gradient inorganic-rich electrode-electrolyte interface. The improved ionic conductivity is attributed to the weakly diverse solvation structures induced by entropy effect. These enable the enhanced rate performance and cycling stability of Prussian blue||hard carbon full cells with high electrode mass loading. More importantly, the practical application of the designed electrolyte was further demonstrated by industry-level 18650 cylindrical cells.

3.
J Ethnopharmacol ; 333: 118455, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38871011

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium crepidatum Lindl. ex Paxton is a perennial epiphyte of Dendrobium genus, distributed in southern China, and utilized as the traditional Chinese medicine "Shihu" in Yunnan Province. Due to its heat-clearing and detoxicating properties, it is formulated as the "XiaoCuoWan" as recorded in the China Pharmacopoeia, and specially used to treat chronic skin inflammatory diseases, such as acne. AIM OF THE STUDY: This research aimed to estimate impact of the octahydroindoline alkaloid Homocrepidine A (HCA), isolated from D. crepidatum, on acne inflammation using both human THP-1 cells and mouse models. Furthermore, the potential anti-inflammatory mechanism of HCA has been analyzed through molecular biology methods and computer simulation. MATERIALS AND METHODS: THP-1 cells and mouse models induced by live Propionibacterium acnes (P. acnes) were employed to evaluate the anti-inflammatory properties of crude extract of D. crepidatum (DCE) and HCA. ELISA was utilized to detect the release of inflammatory cytokines in both cellular and murine ear tissues. RNAseq was used to screen the pathways associated with HCA-mediated inflammatory inhibition, while Western blot, RT-qPCR, and immunofluorescence were utilized to detect the expression of relevant proteins. Additionally, molecular docking simulations and cellular thermal shift assays were employed to confirm the target of HCA. RESULTS: Our research shows that DCE and HCA can effectively alleviate acne inflammation. HCA inhibits TLR2 expression by interacting with amino acid residues in the TIR domain of hTLR2, including Pro-681, Asn-688, Trp-684, and Ile-685. Moreover, HCA disrupts inflammatory signal transduction mediated by MAPK and NF-κB pathways through MyD88-dependent pathway. Additionally, HCA treatment facilitates Nrf2 nuclear translocation and upregulates HO-1 expression, thereby inhibiting NLRP3 inflammasomes activation. In vivo experiments further revealed that HCA markedly attenuated erythema and swelling caused by P. acnes in mice ears, while also decreasing the expression of pro-inflammatory cytokines IL-1ß and IL-8. CONCLUSIONS: Our research highlights the protective effects of D. crepidatum and its bioactive compound HCA against acne inflammation, marking the first exploration of its potential in this context. The discoveries indicate that HCA treatment may represent a promising functional approach for acne therapy.


Subject(s)
Acne Vulgaris , Anti-Inflammatory Agents , Dendrobium , Propionibacterium acnes , Animals , Dendrobium/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Propionibacterium acnes/drug effects , Mice , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , THP-1 Cells , Molecular Docking Simulation , Cytokines/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Disease Models, Animal
4.
Protein Expr Purif ; 222: 106531, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38852715

ABSTRACT

The SARS-CoV-2 main protease (Mpro) plays a crucial role in virus amplification and is an ideal target for antiviral drugs. Currently, authentic Mpro is prepared through two rounds of proteolytic cleavage. In this method, Mpro carries a self-cleavage site at the N-terminus and a protease cleavage site followed by an affinity tag at the C-terminus. This article proposes a novel method for producing authentic Mpro through single digestion. Mpro was constructed by fusing a His tag containing TEV protease cleavage sites at the N-terminus. The expressed recombinant protein was digested by TEV protease, and the generated protein had a decreased molecular weight and significantly increased activity, which was consistent with that of authentic Mpro generated by the previous method. These findings indicated that authentic Mpro was successfully obtained. Moreover, the substrate specificity of Mpro was investigated. Mpro had a strong preference for Phe at position the P2, which suggested that the S2 subsite was an outstanding target for designing inhibitors. This article also provides a reference for the preparation of Mpro for sudden coronavirus infection in the future.


Subject(s)
Coronavirus 3C Proteases , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Substrate Specificity , Humans , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , COVID-19/virology
5.
ACS Appl Mater Interfaces ; 16(27): 35033-35042, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38938082

ABSTRACT

Organic material holds immense potential for Li-ion batteries (LIBs) due to their eco-friendly nature, high structural designability, abundant sources, and high theoretical capacity. However, the limited redox-active sites, low electronic conductivity, sluggish ionic diffusion, and high solubility hinder their practical application. Here, we reported the use of a linear polymer called poly(naphthalenetetracarboxylic dianhydride-pyrene-4,5,9,10-tetraone)-coated graphene nanosheets (NPT/rGO) as a cathode material for LIBs. The NPT polymer has a rotation angle of approximately 63° between each plane, which helps in exposing the active sites and preventing structural pulverization during cycling. The highly conjugated skeleton of the polymer, along with graphene, forms a synergistic effect through a π-π interaction. This combination enhances the conductivity and restricts solubility. Additionally, the linear structure of NPT and the two-dimensional rGO substrates work together to enhance charge transfer and ion diffusion rates, resulting in faster reaction kinetics. Consequently, NPT/rGO exhibits excellent electrochemical performance in terms of high capacity, superior cyclic stability, and good rate capability for LIBs. Moreover, through the combination of experimental investigations and theoretical simulations, a multiple electron reaction mechanism, an efficient Li-ion storage behavior, and a reversible dynamic evolution have been revealed. This study introduces a rational molecular design approach to enhance the electrochemical performance of polyimide derivatives, thereby contributing to the advancement of cutting-edge organic electrode materials for LIBs.

6.
Phytomedicine ; 129: 155699, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733907

ABSTRACT

BACKGROUND: Pulmonary Fibrosis (PF) is a progressive lung disease characterized by the diffuse interstitial tissue, leading to severe breathing difficulties. The existing treatment methods are primarily aimed at slowing the progression of the disease, underscoring the urgent need to discover new drug interventions targeting novel sites. The "gut-lung axis" represents a complex bidirectional communication system where the gut microbiota not only influences lung immunity but also responds to lung-derived signals. Recent advances have uncovered that alterations in gut microbiota composition can significantly impact respiratory diseases, offering new insights into their pathogenesis and potential therapeutic approaches. METHODS: This study is based on the fundamental concepts of the lung-gut axis and our previous research, further exploring the potential mechanisms of 20(S)-Protopanaxadiol (PPD) in ginseng against PF. We utilized a bleomycin-induced mouse model of PF and employed metabolomics and 16S rRNA sequencing to investigate the pathways through which PPD regulates the pulmonary fibrosis process via the gut-lung axis. Finally, we employed strategies such as antibiotic-induced microbiota disruption and fecal microbiota transplantation (FMT) to provide a comprehensive perspective on how PPD regulates pulmonary fibrosis through gut microbiota. RESULTS: The results of the bleomycin (BLM) mouse model of PF proved that PPD can directly act on the glycolysis- related metabolic reprogramming process in lung and the AMPK/STING pathway to improve PF. Combined the analysis of gut microbiota and related metabolites, we found that PPD can regulate the process of PF through the gut-lung axis target points G6PD and SPHK1. FMT and antibiotic-induced microbiota disruption further confirmed intermediate effect of gut microbiota in PF process and the treatment of PPD. Our study suggests that PPD can alleviate the process of pulmonary fibrosis either by directly acting on the lungs or by regulating the gut microbiota. CONCLUSION: This study positions PPD as a vanguard in the therapeutic landscape for pulmonary fibrosis, offering a dual mechanism of action that encompasses both modulation of gut microbiota and direct intervention at molecular targets. These insights highlight the immense therapeutic potential of harnessing the gut-lung axis.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Lung , Mice, Inbred C57BL , Panax , Pulmonary Fibrosis , Sapogenins , Animals , Sapogenins/pharmacology , Pulmonary Fibrosis/drug therapy , Gastrointestinal Microbiome/drug effects , Lung/drug effects , Mice , Panax/chemistry , Bleomycin , Fecal Microbiota Transplantation , Male , RNA, Ribosomal, 16S
7.
ACS Nano ; 18(20): 12981-12993, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717035

ABSTRACT

Aqueous aluminum-ion batteries (AAIBs) are considered as a promising alternative to lithium-ion batteries due to their large theoretical capacity, high safety, and low cost. However, the uneven deposition, hydrogen evolution reaction (HER), and corrosion during cycling impede the development of AAIBs, especially under a harsh environment. Here, a hydrated eutectic electrolyte (AATH40) composed of Al(OTf)3, acetonitrile (AN), triethyl phosphate (TEP), and H2O was designed to improve the electrochemical performance of AAIBs in a wide temperature range. The combination of molecular dynamics simulations and spectroscopy analysis reveals that AATH40 has a less-water-solvated structure [Al(AN)2(TEP)(OTf)2(H2O)]3+, which effectively inhibits side reactions, decreases the freezing point, and extends the electrochemical window of the electrolyte. Furthermore, the formation of a solid electrolyte interface, which effectively inhibits HER and corrosion, has been demonstrated by X-ray photoelectron spectroscopy, X-ray diffraction tests, and in situ differential electrochemical mass spectrometry. Additionally, operando synchrotron Fourier transform infrared spectroscopy and electrochemical quartz crystal microbalance with dissipation monitoring reveal a three-electron storage mechanism for the Al//polyaniline full cells. Consequently, AAIBs with this electrolyte exhibit improved cycling stability within the temperature range of -10-50 °C. This present study introduces a promising methodology for designing electrolytes suitable for low-cost, safe, and stable AAIBs over a wide temperature range.

8.
Phytomedicine ; 129: 155555, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579641

ABSTRACT

BACKGROUND: Ischemic stroke is a leading cause of death and long-term disability worldwide. Studies have suggested that cerebral ischemia induces massive mitochondrial damage. Valerianic acid A (VaA) is the main active ingredient of valerianic acid with neuroprotective activity. PURPOSE: This study aimed to investigate the neuroprotective effects of VaA with ischemic stroke and explore the underlying mechanisms. METHOD: In this study, we established the oxygen-glucose deprivation and reperfusion (OGD/R) cell model and the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model in vitro and in vivo. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of VaA in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP), and activities of NAD+ were detected to reflect mitochondrial function. Mechanistically, gene knockout experiments, transfection experiments, immunofluorescence, DARTS, and molecular dynamics simulation experiments showed that VaA bound to IDO1 regulated the kynurenine pathway of tryptophan metabolism and prevented Stat3 dephosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. RESULTS: We showed that VaA decreased the infarct volume in a dose-dependent manner and exerted neuroprotective effects against reperfusion injury. Furthermore, VaA promoted Opa1-related mitochondrial fusion and reversed neuronal mitochondrial damage and loss after reperfusion injury. In SH-SY5Y cells, VaA (5, 10, 20 µM) exerted similar protective effects against OGD/R-induced injury. We then examined the expression of significant enzymes regulating the kynurenine (Kyn) pathway of the ipsilateral brain tissue of the ischemic stroke rat model, and these enzymes may play essential roles in ischemic stroke. Furthermore, we found that VaA can bind to the initial rate-limiting enzyme IDO1 in the Kyn pathway and prevent Stat3 phosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. Using in vivo IDO1 knockdown and in vitro IDO1 overexpressing models, we demonstrated that the promoted mitochondrial fusion and neuroprotective effects of VaA were IDO1-dependent. CONCLUSION: VaA administration improved neurological function by promoting mitochondrial fusion through the IDO1-mediated Stat3-Opa1 pathway, indicating its potential as a therapeutic drug for ischemic stroke.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Neuroprotective Agents , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Rats , Disease Models, Animal , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Stroke/drug therapy , Kynurenine/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Triterpenes/pharmacology
9.
Adv Mater ; 36(25): e2401288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558119

ABSTRACT

Designing electrocatalysts with high activity and durability for multistep reduction and oxidation reactions is challenging. High-entropy alloys (HEAs) are intriguing due to their tunable geometric and electronic structure through entropy effects. However, understanding the origin of their exceptional performance and identifying active centers is hindered by the diverse microenvironment in HEAs. Herein, NiFeCoCuRu HEAs designed with an average diameter of 2.17 nm, featuring different adsorption capacities for various reactants and intermediates in Li-mediated CO2 redox reactions, are introduced. The electronegativity-dependent nature of NiFeCoCuRu HEAs induces significant charge redistribution, shifting the d-band center closer to Fermi level and forming highly active clusters of Ru, Co, and Ni for Li-based compounds adsorptions. This lowers energy barriers and simultaneously stabilizes *LiCO2 and LiCO3+CO intermediates, enhancing the efficiency of both CO2 reduction and Li2CO3 decomposition over extended periods. This work provides insights into specific active site interactions with intermediates, highlighting the potential of HEAs as promising catalysts for intricate CO2 redox reactions.

10.
Adv Mater ; 36(24): e2400642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428042

ABSTRACT

Achieving reversible insertion/extraction in most cathodes for aqueous aluminum ion batteries (AAIBs) is a significant challenge due to the high charge density of Al3+ and strong electrostatic interactions. Organic materials facilitate the hosting of multivalent carriers and rapid ions diffusion through the rearrangement of chemical bonds. Here, a bipolar conjugated poly(2,3-diaminophenazine) (PDAP) on carbon substrates prepared via a straightforward electropolymerization method is introduced as cathode for AAIBs. The integration of n-type and p-type active units endow PDAP with an increased number of sites for ions interaction. The long-range conjugated skeleton enhances electron delocalization and collaborates with carbon to ensure high conductivity. Moreover, the strong intermolecular interactions including π-π interaction and hydrogen bonding significantly enhance its stability. Consequently, the Al//PDAP battery exhibits a large capacity of 338 mAh g-1 with long lifespan and high-rate capability. It consistently demonstrates exceptional electrochemical performances even under extreme conditions with capacities of 155 and 348 mAh g-1 at -20 and 45 °C, respectively. In/ex situ spectroscopy comprehensively elucidates its cation/anion (Al3+/H3O+ and ClO4 -) storage with 3-electron transfer in dual electroactive centers (C═N and -NH-). This study presents a promising strategy for constructing high-performance organic cathode for AAIBs over a wide temperature range.

11.
Adv Mater ; 36(24): e2312551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433298

ABSTRACT

Owing to continuing global use of lithium-ion batteries (LIBs), in particular in electric vehicles (EVs), there is a need for sustainable recycling of spent LIBs. Deep eutectic solvents (DESs) are reported as "green solvents" for low-cost and sustainable recycling. However, the lack of understanding of the coordination mechanisms between DESs and transition metals (Ni, Mn and Co) and Li makes selective separation of transition metals with similar physicochemical properties practically difficult. Here, it is found that the transition metals and Li have a different stable coordination structure with the different anions in DES during leaching. Further, based on the different solubility of these coordination structures in anti-solvent (acetone), a leaching and separation process system is designed, which enables high selective recovery of transition metals and Li from spent cathode LiNi1/3Co1/3Mn1/3O2 (NCM111), with recovery of acetone. Recovery of spent LiCoO2 (LCO) cathode is also evidenced and a significant selective recovery for Co and Li is established, together with recovery and reuse of acetone and DES. It is concluded that the tuning of cation-anion coordination structure and anti-solvent crystallization are practical for selective recovery of critical metal resources in the spent LIBs recycling.

12.
Chem Sci ; 15(12): 4341-4348, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516068

ABSTRACT

Organic electrode materials have shown significant potential for aqueous Zn ion batteries (AZIBs) due to their flexible structure designability and cost advantage. However, sluggish ionic diffusion, high solubility, and low capacities limit their practical application. Here, we designed a covalent organic framework (TA-PTO-COF) generated by covalently bonding tris(4-formylbiphenyl)amine (TA) and 2,7-diaminopyrene-4,5,9,10-tetraone (PTO-NH2). The highly conjugated skeleton inside enhances its electron delocalization and intermolecular interaction, leading to high electronic conductivity and limited solubility. The open channel within the TA-PTO-COF provides ionic diffusion pathways for fast reaction kinetics. In addition, the abundant active sites (C[double bond, length as m-dash]N and C[double bond, length as m-dash]O) endow the TA-PTO-COF with a large reversible capacity. As a result, the well-designed TA-PTO-COF cathode delivers exceptional capacity (255 mA h g-1 at 0.1 A g-1), excellent cycling stability, and a superior rate capacity of 186 mA h g-1 at 10 A g-1. Additionally, the co-insertion mechanism of Zn2+/H+ within the TA-PTO-COF cathode is revealed in depth by ex situ spectroscopy. This study presents an effective strategy for developing high-performance organic cathodes for advanced AZIBs.

13.
Chem Soc Rev ; 53(8): 4154-4229, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38470073

ABSTRACT

Iron-based materials with significant physicochemical properties, including high theoretical capacity, low cost and mechanical and thermal stability, have attracted research attention as electrode materials for alkali metal-ion batteries (AMIBs). However, practical implementation of some iron-based materials is impeded by their poor conductivity, large volume change, and irreversible phase transition during electrochemical reactions. In this review we critically assess advances in the chemical synthesis and structural design, together with modification strategies, of iron-based compounds for AMIBs, to obviate these issues. We assess and categorize structural and compositional regulation and its effects on the working mechanisms and electrochemical performances of AMIBs. We establish insight into their applications and determine practical challenges in their development. We provide perspectives on future directions and likely outcomes. We conclude that for boosted electrochemical performance there is a need for better design of structures and compositions to increase ionic/electronic conductivity and the contact area between active materials and electrolytes and to obviate the large volume change and low conductivity. Findings will be of interest and benefit to researchers and manufacturers for sustainable development of advanced rechargeable ion batteries using iron-based electrode materials.

14.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425519

ABSTRACT

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

15.
Angew Chem Int Ed Engl ; 63(20): e202402987, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38436516

ABSTRACT

Zinc-based aqueous batteries (ZABs) are attracting extensive attention due to the low cost, high capacity, and environmental benignity of the zinc anode. However, their application is still hindered by the undesired zinc dendrites. Despite Zn-surface modification being promising in relieving dendrites, a thick separator (i.e. glass fiber, 250-700 µm) is still required to resist the dendrite puncture, which limits volumetric energy density of battery. Here, we pivot from the traditional interphase plus extra separator categories, proposing an all-in-one ligand buffer layer (ca. 20 µm) to effectively modulate the Zn2+ transfer and deposition behaviors proved by in situ electrochemical digital holography. Experimental characterizations and density functional theory simulations further reveal that the catechol groups in the buffer layer can accelerate the Zn2+ reduction reaction (ZRR) through the electron-donating p-π conjugation effect, decreasing the negative charge in the coordination environment. Without extra separators, the elaborated system endows low polarization below 28.2 mV, long lifespan of 4950 h at 5 mA cm-2 in symmetric batteries, and an unprecedented volumetric energy density of 99.2 Wh L-1 based on the whole pouch cells. The concomitantly "separator-free" and "dendrite-free" conjugation effect with an accelerated ZRR process could foster the progression of metallic anodes and benefit energetic aqueous batteries.

16.
Phytomedicine ; 128: 155318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493719

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is an escalating global health issue, characterized by rising rates of morbidity and mortality annually. Consequently, further investigation of potential damage mechanisms and potential preventive strategies for PF are warranted. Specnuezhenide (SPN), a prominent secoiridoid compound derived from Ligustrum lucidum Ait, exhibits anti-inflammatory and anti-oxidative capacities, indicating the potential therapeutic actions on PF. However, the underlying mechanisms of SPN on PF remain unclear. PURPOSE: This work was aimed at investigating the protective actions of SPN on PF and the potential mechanism. METHODS: In vivo, mice were administrated with bleomycin (BLM) to establish PF model. PF mice were treated with SPN (45/90 mg/kg) by gavage. In vitro, we employed TGF-ß1 (10 ng/mL)-induced MLE-12 and PLFs cells, which then were treated with SPN (5, 10, 20 µM). DARTS assay, biofilm interference experiment and molecular docking were performed to investigate the molecular target of SPN. RESULTS: In vivo, we found SPN treatment improved survival rate, alleviated pathological changes through reducing BLM-induced extracellular matrix (ECM) deposition, as well as BLM-induced epithelial-mesenchymal transition (EMT). In vitro, SPN inhibited EMT and lung fibroblast transdifferentiation. Mechanistically, SPN activated the AMPK protein to decrease the abnormally high level of PD-L1. Furthermore, the compound C, known as an AMPK inhibitor, exhibited a significant hindrance to the inhibition of SPN on TGF-ß1-caused fibroblast transdifferentiation and proliferation. This outcome could be attributed to the fact that compound C could eliminate the inhibitory effects of SPN on PD-L1 expression. Interestingly, DARTS assay, biofilm interference experiment and molecular docking results all indicated that SPN could bind to AMPK, which suggested that SPN might be a potential agonist targeting AMPK protein. CONCLUSION: Altogether, the results in our work illustrated that SPN promoted AMPK-dependent reduction of PD-L1 protein, contributing to the inhibition of fibrosis progression. Thus, SPN may represent a potential AMPK agonist for PF treatment.


Subject(s)
B7-H1 Antigen , Bleomycin , Molecular Docking Simulation , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Mice , B7-H1 Antigen/metabolism , AMP-Activated Protein Kinases/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Lung/drug effects , Lung/pathology , Transforming Growth Factor beta1/metabolism
17.
Adv Mater ; 36(23): e2313835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427844

ABSTRACT

Multinary metal chalcogenides hold considerable promise for high-energy potassium storage due to their numerous redox reactions. However, challenges arise from issues such as volume expansion and sluggish kinetics. Here, a design featuring a layered ternary Bi0.4Sb1.6Te3 anchored on graphene layers as a composite anode, where Bi atoms act as a lattice softening agent on Sb, is presented. Benefiting from the lattice arrangement in Bi0.4Sb1.6Te3 and structure, Bi0.4Sb1.6Te3/graphene exhibits a mitigated expansion of 28% during the potassiation/depotassiation process and demonstrates facile K+ ion transfer kinetics, enabling long-term durability of 500 cycles at various high rates. Operando synchrotron diffraction patterns and spectroscopies including in situ Raman, ex situ adsorption, and X-ray photoelectron reveal multiple conversion and alloying/dealloying reactions for potassium storage at the atomic level. In addition, both theoretical calculations and electrochemical examinations elucidate the K+ migration pathways and indicate a reduction in energy barriers within Bi0.4Sb1.6Te3/graphene, thereby suggesting enhanced diffusion kinetics for K+. These findings provide insight in the design of durable high-energy multinary tellurides for potassium storage.

18.
J Colloid Interface Sci ; 661: 987-999, 2024 May.
Article in English | MEDLINE | ID: mdl-38330670

ABSTRACT

Although aqueous zinc ion batteries (AZIBs) have the merits of environmental friendliness, high safety and theoretical capacity, the slow kinetics associated with zinc deposition and unavoidable interfacial corrosion have seriously affected the commercialization of aqueous zinc ion batteries. In this work, an ingenious "trinity" design is proposed by applying a porous hydrophilic carbon-loaded iodine coating to the zinc metal surface (INBC@Zn), which simultaneously acts as an artificial protective layer, electrolyte additive and anode curvature regulator, so as to reduce the nucleation overpotential of Zn and promote the preferential deposition of (002) planes to some extent. With this synergistic effect, INBC@Zn exhibits high reversibility and strong side reaction inhibition. As a result, INBC@Zn shows high symmetric cycling stability up to 4500 h at 1 mA cm-2. An ultra-long cycle stability of 1500 cycles with high Coulombic efficiency (99.8 %) is achieved in the asymmetric cell. In addition, the INBC@Zn//NVO full cells exhibit impressive capacity retention (96 % after 1000 cycles at 3 A/g). Importantly, the designed pouch cell demonstrates stable performance and shows certain prospects for application. This work provides a facile and instructive approach toward the development of high-performance AZIBs.

19.
Front Oncol ; 14: 1344669, 2024.
Article in English | MEDLINE | ID: mdl-38361783

ABSTRACT

Background: S100A8, a calcium-binding protein belonging to the S100 family, is involved in immune responses and multiple tumor pathogens. Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of B-cell lymphoma and remains incurable in 40% of patients. However, the role of S100A8 and its regulation of the immune response in DLBCL remain unclear. Methods: The differential expression of S100A8 was identified via the GEO and TCGA databases. The prognostic role of S100A8 in DLBCL was calculated using the Kaplan-Meier curve. The function enrichment of differentially expressed genes (DEGs) was explored through GO, KEGG, GSEA, and PPI analysis. In our cohort, the expression of S100A8 was verified. Meanwhile, the biological function of S100A8 was applied after the inhibition of S100A8 in an in vitro experiment. The association between S100A8 and immune cell infiltration and treatment response in DLBCL was analyzed. Results: S100A8 was significantly overexpressed and related to a poor prognosis in DLBCL patients. Function enrichment analysis revealed that DEGs were mainly enriched in the IL-17 signaling pathway. Our cohort also verified this point. In vitro experiments suggested that inhibition of S100A8 should promote cell apoptosis and suppress tumor growth. Single-cell RNA sequence analysis indicated that S100A8 might be associated with features of the tumor microenvironment (TME), and immune infiltration analyses discovered that S100A8 expression was involved in TME. In terms of drug screening, we predicted that many drugs were associated with preferable sensitivity. Conclusion: Elevated S100A8 expression is associated with a poor prognosis and immune infiltration in DLBCL. Inhibition of S100A8 could promote cell apoptosis and suppress tumor growth. Meanwhile, S100A8 has the potential to be a promising immunotherapeutic target for patients with DLBCL.

20.
Angew Chem Int Ed Engl ; 63(14): e202319091, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38308095

ABSTRACT

Aqueous zinc-ion batteries are regarded as promising and efficient energy storage systems owing to remarkable safety and satisfactory capacity. Nevertheless, the instability of zinc metal anodes, characterized by issues such as dendrite growth and parasitic side reactions, poses a significant barrier to widespread applications. Herein, we address this challenge by designing a localized conjugated structure comprising a cyclic polyacrylonitrile polymer (CPANZ), induced by a Zn2+-based Lewis acid (zinc trifluoromethylsulfonate) at a temperature of 120 °C. The CPANZ layer on the Zn anode, enriched with appropriate pyridine nitrogen-rich groups (conjugated cyclic -C=N-), exhibits a notable affinity for Zn2+ with ample deposition sites. This zincophilic skeleton not only serves as a protective layer to guide the deposition of Zn2+ but also functions as proton channel blocker, regulating the proton flux to mitigate the hydrogen evolution. Additionally, the strong adhesion strength of the CPANZ layer guarantees its sustained protection to the Zn metal during long-term cycling. As a result, the modified zinc electrode demonstrates long cycle life and high durability in both half-cell and pouch cells. These findings present a feasible approach to designing high performance aqueous anodes by introducing a localized conjugated layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...