Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38754409

ABSTRACT

Drug repurposing offers a viable strategy for discovering new drugs and therapeutic targets through the analysis of drug-gene interactions. However, traditional experimental methods are plagued by their costliness and inefficiency. Despite graph convolutional network (GCN)-based models' state-of-the-art performance in prediction, their reliance on supervised learning makes them vulnerable to data sparsity, a common challenge in drug discovery, further complicating model development. In this study, we propose SGCLDGA, a novel computational model leveraging graph neural networks and contrastive learning to predict unknown drug-gene associations. SGCLDGA employs GCNs to extract vector representations of drugs and genes from the original bipartite graph. Subsequently, singular value decomposition (SVD) is employed to enhance the graph and generate multiple views. The model performs contrastive learning across these views, optimizing vector representations through a contrastive loss function to better distinguish positive and negative samples. The final step involves utilizing inner product calculations to determine association scores between drugs and genes. Experimental results on the DGIdb4.0 dataset demonstrate SGCLDGA's superior performance compared with six state-of-the-art methods. Ablation studies and case analyses validate the significance of contrastive learning and SVD, highlighting SGCLDGA's potential in discovering new drug-gene associations. The code and dataset for SGCLDGA are freely available at https://github.com/one-melon/SGCLDGA.


Subject(s)
Neural Networks, Computer , Humans , Drug Repositioning/methods , Computational Biology/methods , Algorithms , Software , Drug Discovery/methods , Machine Learning
2.
Emerg Microbes Infect ; : 2353298, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721691

ABSTRACT

With the atypical rise of Mycoplasma pneumoniae infection (MPI) in 2023, prompt studies are needed to determine the current epidemic features and risk factors with emerging trends of MPI to furnish a framework for subsequent investigations. This multicentre, retrospective study was designed to analyse the epidemic patterns of MPI before and after the COVID-19 pandemic, as well as genotypes and the macrolide resistance-associated mutations in MP sampled from pediatric patients in Southern China. Clinical data was collected from 133674 patients admitted into investigational hospitals from June 1, 2017, to November 30, 2023. Metagenomic next-generation sequencing (mNGS) data were retrieved based on MP sequence positive samples from 299 pediatric patients for macrolide resistance-associated mutations analysis. Pearson's chi-squared test was used to compare categorical variables between different time frames. The monthly average cases of pediatric common respiratory infection diseases were increased without enhanced public health measures after the pandemic, especially for influenza, respiratory syncytial virus infection, and MPI. The contribution of MPI to pneumoniae was similar to that in the outbreak in 2019. Compared mNGS data between 2019-2022 and 2023, the severity of MP did not grow stronger despite higher rates of macrolide-resistance hypervariable sites, including loci 2063 and 2064, were detected in childhood MP samples of 2023. Our findings indicated ongoing surveillance is necessary to understand the impact of post pandemic on MP transmission disruption on epidemic season and severity of clinical outcomes in different scenarios.

3.
BMJ Open ; 14(3): e075138, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490657

ABSTRACT

INTRODUCTION: Alport syndrome (AS) is one of the most common fatal hereditary renal diseases in human, with a high risk of progressing to end-stage renal disease without effective treatments. Mesenchymal stem cells (MSCs) have recently emerged as a promising therapeutic strategy for chronic kidney disease. However, the safety and therapeutic potential of MSC transfusion for patients with AS are still need to be confirmed. Therefore, we have designed a clinical trial to evaluate the hypothesis that intravenous infusion of human umbilical cord-derived MSC (hUC-MSC) is safe, feasible, and well-tolerated in children with AS. METHODS AND ANALYSIS: We report the protocol of the first prospective, open-label, single-arm clinical trial to evaluate the safety and preliminary efficacy of hUC-MSC transfusion in children with early-stage AS. Paediatric patients diagnosed with AS who have persistent albuminuria will be candidates for screening. Twelve eligible patients are planned to recruit and will receive hUC-MSC infusions under close safety monitoring, and complete the efficacy assessments at scheduled follow-up visits. The primary endpoints include the occurrence of adverse events to assess safety and the albuminuria level for efficacy evaluation. Secondary endpoint assessments are based on haematuria and glomerular filtration measurements. Each patient's efficacy endpoints will be evaluated against their baseline levels. Additionally, the underlying mechanism of hUC-MSC therapy will be explored through transcriptomic and proteomic analysis of blood and urine samples. ETHICS AND DISSEMINATION: The protocol (V.1.0, date 17 January 2015) was approved by the institutional review board of the Affiliated Taihe Hospital of Hubei University of Medicine (ethical approval 03 March 2015). Written informed consent will be obtained from the patient and/or guardians before study specific process. In addition to publication in a peer-reviewed scientific journal, a lay summary of study will be available for participants and the public on the Chinese Organization for Rare Disorders website (http://www.cord.org.cn/). TRIAL REGISTRATION NUMBER: ISRCTN62094626.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Nephritis, Hereditary , Humans , Child , SARS-CoV-2 , Nephritis, Hereditary/complications , Nephritis, Hereditary/therapy , Albuminuria , Prospective Studies , Proteomics , Treatment Outcome , Mesenchymal Stem Cells/physiology , Umbilical Cord
4.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38202569

ABSTRACT

Understanding plastic deformation behaviour is key to optimising the mechanical properties of nano-polycrystalline layered composites. This study employs the molecular dynamics (MD) simulation to comprehensively investigate the effects of various factors, such as grain sizes, strain rates, and the interlayer thicknesses of the intermetallic compounds (IMCs), on the plastic deformation behaviour of nano-polycrystalline Al/Mg layered composites. Our findings reveal that the influence of grain size on deformation behaviour is governed by the strain rate, and an increase in grain size is inversely proportional to yield stress at low strain rates, whereas it is positively proportional to tensile stress at high strain rates. Moreover, an optimal thickness of the intermediate layer contributes to enhanced composite strength, whereas an excessive thickness leads to reduced tensile strength due to the fewer grain boundaries (GBs) available for accommodating dislocations. The reinforcing impact of the intermediate IMCs layer diminishes at excessive strain rates, as the grains struggle to accommodate substantial large strains within a limited timeframe encountered at high strain rates. The insights into grain sizes, strain rates, and interlayer thicknesses obtained from this study enable the tailored development of nanocomposites with optimal mechanical characteristics.

5.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189035, 2024 01.
Article in English | MEDLINE | ID: mdl-38049014

ABSTRACT

Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.


Subject(s)
F-Box Proteins , Gastrointestinal Neoplasms , Humans , F-Box Proteins/genetics , F-Box Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/metabolism , Gastrointestinal Neoplasms/genetics
6.
Immunol Rev ; 321(1): 228-245, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903748

ABSTRACT

Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.


Subject(s)
Ferroptosis , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Amino Acids , Apoptosis , Iron
7.
Angew Chem Int Ed Engl ; 62(17): e202300500, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36852467

ABSTRACT

Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.


Subject(s)
Mouse Embryonic Stem Cells , Transcriptome , Animals , Mice , Acetylglucosamine/metabolism , Cell Differentiation , Embryonic Stem Cells , Gene Expression Regulation , Mouse Embryonic Stem Cells/metabolism , Cell Lineage
8.
Polymers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297894

ABSTRACT

Drug-resistant Gram-negative bacteria pose a serious threat to public health, and polymyxin B (PMB) is clinically used as a last-line therapy for the treatment of infections caused by these pathogens. However, the appearance of PMB resistance calls for an effort to develop new approaches to improve its antibacterial performance. In this work, a new type of nanocomposite, composed of PMB molecules being chemically decorated on the surface of graphene oxide (GO) nanosheets, was designed, which showed potent antibacterial ability through synergistically and physically disturbing the bacterial membrane. The as-fabricated PMB@GO nanocomposites demonstrated an enhanced bacterial-killing efficiency, with a minimum inhibitory concentration (MIC) value half of that of free PMB (with an MIC value as low as 0.5 µg mL-1 over Escherichia coli), and a bacterial viability less than one fourth of that of PMB (with a bacterial reduction of 60% after 3 h treatment, and 90% after 6 h incubation). Furthermore, the nanocomposite displayed moderate cytotoxicity or hemolysis effect, with cellular viabilities over 85% at concentrations up to 16 times the MIC value. Studies on antibacterial mechanism revealed that the synergy between PMB molecules and GO nanosheets greatly facilitated the vertical insertion of the nanocomposite into the lipid membrane, leading to membrane disturbance and permeabilization. Our results demonstrate a physical mechanism for improving the antibacterial performance of PMB and developing advanced antibacterial agents for better clinic uses.

9.
Stem Cell Res Ther ; 13(1): 451, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064461

ABSTRACT

BACKGROUND: Diabetic foot ulcer (DFU) is a serious chronic complication of diabetes mellitus that contributes to 85% of nontraumatic lower extremity amputations in diabetic patients. Preliminary clinical benefits have been shown in treatments based on mesenchymal stem cells for patients with DFU or peripheral arterial disease (PAD). However, the long-term safety and benefits are unclear for patients with both DFU and PAD who are not amenable to surgical revascularization. METHODS: In this phase I pilot study, 14 patients with PAD and incurable DFU were enrolled to assess the safety and efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) administration based on conservative treatments. All patients received topical and intravenous administrations of hUC-MSCs at a dosage of 2 × 105 cells/kg with an upper limit of 1 × 107 cells for each dose. The adverse events during treatment and follow-up were documented for safety assessments. The therapeutic efficacy was assessed by ulcer healing status, recurrence rate, and 3-year amputation-free rate in the follow-up phase. RESULTS: The safety profiles were favorable. Only 2 cases of transient fever were observed within 3 days after transfusion and considered possibly related to hUC-MSC administration intravenously. Ulcer disclosure was achieved for more than 95% of the lesion area for all patients within 1.5 months after treatment. The symptoms of chronic limb ischaemia were alleviated along with a decrease in Wagner scores, Rutherford grades, and visual analogue scale scores. No direct evidence was observed to indicate the alleviation of the obstruction in the main vessels of target limbs based on computed tomography angiography. The duration of rehospitalization for DFU was 2.0 ± 0.6 years. All of the patients survived without amputation due to the recurrence of DFU within 3 years after treatments. CONCLUSIONS: Based on the current pilot study, the preliminary clinical benefits of hUC-MSCs on DFU healing were shown, including good tolerance, a shortened healing time to 1.5 months and a favorable 3-year amputation-free survival rate. The clinical evidence in the current study suggested a further phase I/II study with a larger patient population and a more rigorous design to explore the efficacy and mechanism of hUC-MSCs on DFU healing. TRIAL REGISTRATION: The current study was registered retrospectively on 22 Jan 2022 with the Chinese Clinical Trial Registry (ChiCTR2200055885), http://www.chictr.org.cn/showproj.aspx?proj=135888.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Mesenchymal Stem Cells , Peripheral Arterial Disease , Administration, Intravenous , Diabetic Foot/therapy , Follow-Up Studies , Humans , Peripheral Arterial Disease/therapy , Pilot Projects , Retrospective Studies , Umbilical Cord
10.
Front Endocrinol (Lausanne) ; 13: 852247, 2022.
Article in English | MEDLINE | ID: mdl-35663308

ABSTRACT

Background: Hyperuricemia has recently been identified as a risk factor of cardiovascular diseases; however, prognostic value of hyperuricemia in patients with ST-segment elevation myocardial infarction (STEMI) remained unclear. Simultaneously, the mechanism of this possible relationship has not been clarified. At present, some views believe that hyperuricemia may be related to the inflammatory response. Our study aimed to investigate the association between hyperuricemia and long-term poor prognosis and inflammation in STEMI patients undergoing percutaneous coronary intervention (PCI). Methods: A total of 1,448 consecutive patients with STEMI were studied throughout 2013 at a single center. The primary endpoint was all-cause death at 2- and 5-year follow-up. Inflammatory biomarkers were collected on admission of those patients: high sensitive C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and white blood cell (WBC) count. Results: Hyperuricemia was associated with higher 2- and 5-year all-cause death in STEME patients compared to normouricemia (5.5% vs. 1.4%, P <0.001; 8.0% vs 3.9%, P = 0.004; respectively). After multivariable adjustment, hyperuricemia was still an independent predictor of 2-year all-cause death (hazard ratio (HR) =4.332, 95% confidence interval (CI): 1.990-9.430, P <0.001) and 5-year all-cause death (HR =2.063, 95% CI: 1.186-3.590, P =0.010). However, there was no difference in hs-CRP, ESR, and WBC count on admission in STEMI patients with hyperuricemia compared to normouricemia (P >0.05). Conclusions: Hyperuricemia was associated with higher risks of 2- and 5-year all-cause deaths in patients with STEMI undergoing PCI. However, this study did not find a correlation between hyperuricemia and inflammatory responses in newly admitted STEMI patients.


Subject(s)
Hyperuricemia , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , C-Reactive Protein/analysis , Humans , Hyperuricemia/complications , Hyperuricemia/epidemiology , Percutaneous Coronary Intervention/adverse effects , ST Elevation Myocardial Infarction/complications , ST Elevation Myocardial Infarction/surgery , Treatment Outcome
11.
J Transl Med ; 19(1): 365, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446049

ABSTRACT

BACKGROUND: Recently, convalescent plasma (CP) transfusion was employed for severe or critically ill patients with coronavirus disease-2019. However, the benefits of CP for patients with different conditions are still in debate. To contribute clinical evidence of CP on critically ill patients, we analyze the characteristics and outcomes of patients with or without CP transfusion. METHODS: In this cohort study, 14 patients received CP transfusion based on the standard treatments, whereas the other 10 patients received standard treatments as control. Clinical characteristics and outcomes were analyzed. The cumulative survival rate was calculated by Kaplan-Meier survival analysis. RESULTS: Data analysis was performed on 24 patients (male/female: 15/9) with a median age of 64.0 (44.5-74.5) years. Transient fever was reported in one patient. The cumulative mortality was 21% (3/14) in patients receiving CP transfusion during a 28-day observation, whereas one dead case (1/10) was reported in the control group. No significant difference was detected between groups in 28-day mortality (P = 0.615) and radiological alleviation of lung lesions (P = 0.085). CONCLUSION: In our current study, CP transfusion was clinically safe based on the safety profile; however, the clinical benefit was not significant in critically ill patients with more comorbidities at the late stage of disease during a 28-day observation.


Subject(s)
COVID-19 , Critical Illness , Aged , COVID-19/therapy , Cohort Studies , Female , Humans , Immunization, Passive , Male , Middle Aged , SARS-CoV-2 , COVID-19 Serotherapy
12.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 363-387, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34314224

ABSTRACT

As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.


Subject(s)
Glycoproteins , Polysaccharides , Glycosylation
14.
Theranostics ; 11(5): 2170-2181, 2021.
Article in English | MEDLINE | ID: mdl-33500718

ABSTRACT

Introduction: An increasing number of children with severe coronavirus disease 2019 (COVID-19) is being reported, yet the spectrum of disease severity and expression patterns of angiotensin-converting enzyme 2 (ACE2) in children at different developmental stages are largely unknow. Methods: We analysed clinical features in a cohort of 173 children with COVID-19 (0-15 yrs.-old) between January 22, 2020 and March 15, 2020. We systematically examined the expression and distribution of ACE2 in different developmental stages of children by using a combination of children's lung biopsies, pluripotent stem cell-derived lung cells, RNA-sequencing profiles, and ex vivo SARS-CoV-2 pseudoviral infections. Results: It revealed that infants (< 1yrs.-old), with a weaker potency of immune response, are more vulnerable to develop pneumonia whereas older children (> 1 yrs.-old) are more resistant to lung injury. The expression levels of ACE2 however do not vary by age in children's lung. ACE2 is notably expressed not only in Alveolar Type II (AT II) cells, but also in SOX9 positive lung progenitor cells detected in both pluripotent stem cell derivatives and infants' lungs. The ACE2+SOX9+ cells are readily infected by SARS-CoV-2 pseudovirus and the numbers of the double positive cells are significantly decreased in older children. Conclusions: Infants (< 1 yrs.-old) with SARS-CoV-2 infection are more vulnerable to lung injuries. ACE2 expression in multiple types of lung cells including SOX9 positive progenitor cells, in cooperation with an unestablished immune system, could be risk factors contributing to vulnerability of infants with COVID-19. There is a need to continue monitoring lung development in young children who have recovered from SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/cytology , Stem Cells/metabolism , Adolescent , Biopsy , Child , Child, Preschool , Female , Humans , Immune System , Infant , Infant, Newborn , Lung/virology , Male , RNA-Seq , Risk Factors , SARS-CoV-2 , SOX9 Transcription Factor/metabolism , Single-Cell Analysis , Stem Cells/virology
15.
Clin Infect Dis ; 73(11): e4154-e4165, 2021 12 06.
Article in English | MEDLINE | ID: mdl-33388749

ABSTRACT

BACKGROUND: Children and older adults with coronavirus disease 2019 (COVID-19) display a distinct spectrum of disease severity yet the risk factors aren't well understood. We sought to examine the expression pattern of angiotensin-converting enzyme 2 (ACE2), the cell-entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the role of lung progenitor cells in children and older patients. METHODS: We retrospectively analyzed clinical features in a cohort of 299 patients with COVID-19. The expression and distribution of ACE2 and lung progenitor cells were systematically examined using a combination of public single-cell RNA-seq data sets, lung biopsies, and ex vivo infection of lung tissues with SARS-CoV-2 pseudovirus in children and older adults. We also followed up patients who had recovered from COVID-19. RESULTS: Compared with children, older patients (>50 years.) were more likely to develop into serious pneumonia with reduced lymphocytes and aberrant inflammatory response (P = .001). The expression level of ACE2 and lung progenitor cell markers were generally decreased in older patients. Notably, ACE2 positive cells were mainly distributed in the alveolar region, including SFTPC positive cells, but rarely in airway regions in the older adults (P < .01). The follow-up of discharged patients revealed a prolonged recovery from pneumonia in the older (P < .025). CONCLUSIONS: Compared to children, ACE2 positive cells are generally decreased in older adults and mainly presented in the lower pulmonary tract. The lung progenitor cells are also decreased. These risk factors may impact disease severity and recovery from pneumonia caused by SARS-Cov-2 infection in older patients.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Stem Cells , Aged , Child , Humans , Lung/cytology , Middle Aged , RNA-Seq , Retrospective Studies , Severity of Illness Index
16.
PLoS Med ; 17(6): e1003130, 2020 06.
Article in English | MEDLINE | ID: mdl-32544155

ABSTRACT

BACKGROUND: As of April 18, 2020, over 2,000,000 patients had been diagnosed with coronavirus disease-2019 (COVID-19) globally, and more than 140,000 deaths had been reported. The clinical and epidemiological characteristics of adult patients have been documented recently. However, information on pediatric patients is limited. We describe the clinical and epidemiological characteristics of pediatric patients to provide valuable insight into the early diagnosis and assessment of COVID-19 in children. METHODS AND FINDINGS: This retrospective, observational study involves a case series performed at 4 hospitals in West China. Thirty-four pediatric patients with COVID-19 were included from January 27 to February 23, 2020. The final follow-up visit was completed by March 16, 2020. Clinical and epidemiological characteristics were analyzed on the basis of demographic data, medical history, laboratory tests, radiological findings, and treatment information. Data analysis was performed for 34 pediatrics patients with COVID-19 aged from 1 to 144 months (median 33.00, interquartile range 10.00-94.25), among whom 14 males (41%) were included. All the patients in the current study presented mild (18%) or moderate (82%) forms of COVID-19. A total of 48% of patients were noted to be without a history of exposure to an identified source. Mixed infections of other respiratory pathogens were reported in 16 patients (47%). Comorbidities were reported in 6 patients (18%). The most common initial symptoms were fever (76%) and cough (62%). Expectoration (21%), vomiting (12%), and diarrhea (12%) were also reported in a considerable portion of cases. A substantial increase was detected in serum amyloid A for 17 patients (among 20 patients with available data; 85%) and in high-sensitivity C-reactive protein for 17 patients (among 29 patients with available data; 59%), whereas a decrease in prealbumin was noticed in 25 patients (among 32 patients with available data; 78%). In addition, significant increases in the levels of lactate dehydrogenase and α-hydroxybutyrate dehydrogenase were detected in 28 patients (among 34 patients with available data; 82%) and 25 patients (among 34 patients with available data; 74%), respectively. Patchy lesions in lobules were detected by chest computed tomographic scans in 28 patients (82%). Ground-glass opacities, which were a typical feature in adults, were rare in pediatric patients (3%). Rapid radiologic progression and a late-onset pattern of lesions in the lobules were also noticed. Lesions in lobules still existed in 24 (among 32 patients with lesions; 75%) patients that were discharged, although the main symptoms disappeared a few days after treatment. All patients were discharged, and the median duration of hospitalization was 10.00 (8.00-14.25) days. The current study was limited by the small sample size and a lack of dynamic detection of inflammatory markers. CONCLUSIONS: Our data systemically presented the clinical and epidemiological features, as well as the outcomes, of pediatric patients with COVID-19. Stratified analysis was performed between mild and moderate cases. The findings offer new insight into early identification and intervention in pediatric patients with COVID-19.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Lung/diagnostic imaging , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Betacoronavirus , C-Reactive Protein/metabolism , COVID-19 , Child , Child, Preschool , China/epidemiology , Coinfection/epidemiology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/metabolism , Cough/epidemiology , Cough/physiopathology , Diarrhea/epidemiology , Diarrhea/physiopathology , Female , Fever/epidemiology , Fever/physiopathology , Humans , Hydroxybutyrate Dehydrogenase/metabolism , Infant , L-Lactate Dehydrogenase/metabolism , Length of Stay/statistics & numerical data , Male , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/metabolism , Prealbumin/metabolism , Retrospective Studies , SARS-CoV-2 , Serum Amyloid A Protein/metabolism , Severity of Illness Index , Tomography, X-Ray Computed , Vomiting/epidemiology , Vomiting/physiopathology
17.
Stem Cell Res Ther ; 11(1): 43, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32014055

ABSTRACT

BACKGROUND: Cerebral palsy (CP) is a syndrome of childhood movement and posture disorders. Clinical evidence is still limited and sometimes inconclusive about the benefits of human umbilical cord mesenchymal stem cells (hUC-MSCs) for CP. We conducted a randomized trial to evaluate the safety and efficacy of hUC-MSC transplantation concomitant with rehabilitation in patients with CP. METHODS: Eligible patients were allocated into the hUC-MSC group and control group. In addition to rehabilitation, the patients in the hUC-MSC group received four transfusions of hUC-MSCs intravenously, while the control group received a placebo. Adverse events (AEs) were collected for safety evaluation in the 12-month follow-up phase. Primary endpoints were assessed as activities of daily living (ADL), comprehensive function assessment (CFA), and gross motor function measure (GMFM) scales. In addition, cerebral metabolic activity was detected by 18F-FDG-PET/CT to explore the possible mechanism of the therapeutic effects. Primary endpoint data were analyzed by ANOVA using SPSS version 20.0. RESULTS: Forty patients were enrolled, and 1 patient withdrew informed consent. Therefore, 39 patients received treatments and completed the scheduled assessments. No significant difference was shown between the 2 groups in AE incidence. Additionally, significant improvements in ADL, CFA, and GMFM were observed in the hUC-MSC group compared with the control group. In addition, the standard uptake value of 18F-FDG was markedly increased in 3 out of 5 patients from the hUC-MSC group at 12 months after transplantation. CONCLUSIONS: Our clinical data showed that hUC-MSC transplantation was safe and effective at improving the gross motor and comprehensive function of children with CP when combined with rehabilitation. Recovery of cerebral metabolic activity might play an essential role in the improvements in brain function in patients with CP. The therapeutic window, transfusion route, and dosage in our study were considerable for reference in clinical application. TRIAL REGISTRATION: Chictr.org.cn, ChiCTR1800016554. Registered 08 June 2018-retrospectively registered. The public title was "Randomized trial of umbilical cord-derived mesenchymal stem cells for cerebral palsy."


Subject(s)
Cerebral Palsy/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Activities of Daily Living , Child, Preschool , Double-Blind Method , Female , Humans , Male
18.
Nat Commun ; 10(1): 4065, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492838

ABSTRACT

Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG.


Subject(s)
Acetylglucosamine/metabolism , Monosaccharides/metabolism , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Receptors, Estrogen/metabolism , Animals , Azides/chemistry , Azides/metabolism , Cell Line, Tumor , Cell Self Renewal , Cells, Cultured , Glycosylation , HeLa Cells , Hexosamines/metabolism , Humans , MCF-7 Cells , Mice , Monosaccharides/chemistry , Mouse Embryonic Stem Cells/cytology , NIH 3T3 Cells , Pluripotent Stem Cells/cytology , Protein Processing, Post-Translational
19.
J Nanosci Nanotechnol ; 19(5): 2723-2731, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30501772

ABSTRACT

Real materials have structural defects that are normally brought in during the processes of manufacturing and storage and often have a structure with abundant grains, as well as being subjected to multi-directional force conditions. The study of temperature's effect on plastic deformation mechanisms in polycrystalline materials bathed by a multi-axial force is still very rare and not clear. Therefore, we conducted very large-scale molecular dynamics simulations to study the deformation and fracture behaviour of nanostructured polycrystalline Ni under a pre-existing external tensile hydrostatic stress with various temperatures. By characterizing the deformation and fracture mechanisms at an atomic scale, our results elucidate the effect of temperature on brittle versus ductile fracture behaviour by analysing the local stresses for void nucleation and crack propagation and the associated interplays of grain boundary, dislocation/twin and void/crack activities. The lower temperature results in a more brittle fracture manner. This is because the decreasing temperatures contribute to more sources of local stress concentrators for void/crack nucleation and propagation, and suppress the plastic deformation achieved by the activities of grain boundary, twin and dislocation. Our findings shed a light on a fundamental understanding of polycrystalline Ni metals subjected to complex working environments.

20.
Cell Transplant ; 27(2): 325-334, 2018 02.
Article in English | MEDLINE | ID: mdl-29637820

ABSTRACT

Cerebral palsy (CP) is a common disability which results in permanent chronic motor disability appearing in early childhood. Recently human umbilical cord blood mesenchymal stem cell (hUCB-MSC) infusion has emerged as a promising therapeutic strategy for CP, and the treatment efficacy remains to be confirmed by clinical trials. All 54 patients received basic rehabilitation as a background treatment. The infusion group comprising 27 patients received 4 infusions of hUCB-MSCs (intravenous infusions at a fixed dose of 5 × 107) and basic rehabilitation treatment, whereas 27 patients in the control group received 0.9% normal saline and basic rehabilitation treatment. Several indices were tested from baseline up to 24 months posttreatment regarding efficacy and safety evaluations, including the gross motor function measurement 88 (GMFM-88) scores, the comprehensive function assessment (CFA), lab tests, electroencephalogram (EEG), routine magnetic resonance imaging (MRI), and adverse events. The changes in the total proportion of GMFM-88 and total scores of CFA in the hUCB-MSC infusion group were significantly higher than that in control group at 3, 6, 12, 24 months posttreatment. Less diffuse slow waves were noticed after hUCB-MSC infusion in patients with slowing of EEG background rhythms at baseline. Based on the routine MRI exams, improvements in cerebral structures were rare after treatment. Serious adverse events were not observed during the whole study period. The results of the study indicated that hUCB-MSC infusion with basic rehabilitation was safe and effective in improving gross motor and comprehensive functions in children with CP.


Subject(s)
Cerebral Palsy/therapy , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Child , Child, Preschool , Electroencephalography , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...