Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Pharmacol ; (0)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38113918

ABSTRACT

ABSTRACT: Studies have examined the therapeutic effect of levosimendan on cardiovascular diseases such as heart failure, perioperative cardiac surgery, and septic shock, but the specific mechanism in mice remains largely unknown. This study aimed to investigate the relaxation mechanism of levosimendan in the thoracic aorta smooth muscle of mice. Levosimendan-induced relaxation of isolated thoracic aortic rings that were precontracted with norepinephrine (NE) or KCl was recorded in an endothelium-independent manner. Vasodilatation by levosimendan was not associated with the production of the endothelial relaxation factors NO and PGI2. The voltage-dependent K+ channel (KV) blocker (4-aminopyridine) and selective KCa blocker (tetraethylammonium) had no effect on thoracic aortas treated with levosimendan, indicating that KV and KCa channels may not be involved in the levosimendan-induced relaxation mechanism. Although the inwardly rectifying K+ channel (Kir) blocker (barium chloride) and the KATP channel blocker (glibenclamide) significantly inhibited levosimendan-induced vasodilation in the isolated thoracic aorta, barium chloride had a much stronger inhibitory effect on levosimendan-induced vasodilation than glibenclamide, suggesting that levosimendan-induced vasodilation may be mediated by Kir channels. The vasodilation effect and expression of Kir 2.1 induced by levosimendan were further enhanced by the PKC inhibitor staurosporine. Extracellular calcium influx was inhibited by levosimendan without affecting intracellular Ca2+ levels in the isolated thoracic aorta. These results suggest that Kir channels play a more important role than KATP channels in regulating vascular tone in larger arteries and that the activity of the Kir channel is enhanced by the PKC pathway.

2.
Int J Biol Macromol ; 219: 166-174, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35932801

ABSTRACT

Cellulose-supported cobalt ferrite (CoFe2O4/RC) was synthesized via a facile one-pot hydrothermal method and demonstrated to be an efficient catalyst to activate peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). The characterizations of CoFe2O4/RC catalysts revealed that an appropriate particle size of the cellulose support could promote the dispersion of CoFe2O4 nanoparticles and consequently promote the catalytic activity of the resulting CoFe2O4/RC catalysts. The degradation of SMX reached 97.6 % within 20 min at 30 °C with the CoFe2O4/RC/PMS system. The mechanism of SMX degradation over CoFe2O4/RC-activated PMS was studied via EPR, XPS, and quenching tests. The results suggested that 1O2 was the dominant reactive oxygen species and was accompanied by SO4-, OH, and O2- radicals for SMX degradation. The CoFe2O4/RC catalyst exhibited high stability and recyclability and maintained high catalytic activity after five experimental cycles.


Subject(s)
Cellulose , Sulfamethoxazole , Peroxides , Reactive Oxygen Species
3.
J Chromatogr A ; 1620: 461036, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32201039

ABSTRACT

Leaves, flowers, fruits and stems (44 sample groups) were collected from mature Camptotheca acuminate during 2017.3-2018.3 and classified by ultra-high performance liquid chromatography coupled with quadrupole-time of flight-mass spectrometry based metabolomics. One hundred metabolites including forty-seven alkaloids, fifteen terpenes, thirty-two polyphenols and six other metabolites were rapidly identified through the in-house database alignment at first glance. Thirty-three alkaloids classified into five groups including camptothecin group (CG1-13), pumiloside group (PG1-5), strictosidinic acid group (SG1-3), vincosamide group (VG1-7), and a new hybrid group, vincosamide-camptothecin group (VC1-5) were mined and further characterized by MS/MS analyses. The identification of two untapped biosynthetic precursors, 2-hydroxypumiloside (PG2) and 16­hydroxy­15, 16-dihydrocamptothecoside (CG3), along with sixteen new alkaloids enables us for a better understanding of camptothecin biogenetic reasoning. The underlying enzymes involved in camptothecin biosynthesis were also proposed according to the guiding metabolic map, thus purposefully mining of enzymes involved in the downstream biosynthetic pathway of camptothecin could be initiated with the help of this map.


Subject(s)
Alkaloids/analysis , Biosynthetic Pathways , Camptotheca/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Camptothecin/analogs & derivatives , Camptothecin/analysis , Camptothecin/chemistry , Camptothecin/metabolism , Carbolines/analysis , Carbolines/chemistry , Databases as Topic , Discriminant Analysis , Glycosides/analysis , Glycosides/chemistry , Indole Alkaloids/analysis , Indole Alkaloids/chemistry , Least-Squares Analysis , Metabolic Networks and Pathways , Metabolome , Metabolomics , Multivariate Analysis , Principal Component Analysis
4.
Fitoterapia ; 134: 113-128, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30794920

ABSTRACT

The plant derived camptothecin (CPT) is a pentacyclic pyrroloquinoline alkaloid with unique antitumor activity. Successive discoveries of new CPT-producing plants occurred in recent years due to market demands. The scattered distribution among angiosperms drew researchers' attention. The aim of this review is to appraise the literature available to date for CPT distribution and the phytochemistry of these CPT-producing plants. Metabolite comparative analyses between the plants were also conducted for tracking of possible clues for CPT biosynthesis. Forty-three plant species in total were reported to possess CPT-producing capability, and one hundred twenty-five alkaloids classified into three major categories are summarized herein. Metabolite comparative analysis between these plants suggests the probability that the formation of the central intermediate for CPT biosynthesis has multiple origins. A more complete biogenetic reasoning for CPT and its structural homolog was delineated based on this fragmentary phytochemical evidence from a chemical point of view. Furthermore, an in-house compound database was constructed for further metabolomic analysis.


Subject(s)
Antineoplastic Agents, Phytogenic/biosynthesis , Camptothecin/biosynthesis , Magnoliopsida/chemistry , Magnoliopsida/classification , Molecular Structure , Phytochemicals/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...