Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 261(Pt 2): 129841, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309401

ABSTRACT

The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.


Subject(s)
Fusarium , Transcription Factors , Feedback , Transcription Factors/genetics , Transcription Factors/metabolism , Fusarium/physiology , Gene Expression , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology
2.
Genes (Basel) ; 14(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38137057

ABSTRACT

Tea is an important cash crop worldwide, and its nutritional value has led to its high economic benefits. Tea anthracnose is a common disease of tea plants that seriously affects food safety and yield and has a far-reaching impact on the sustainable development of the tea industry. In this study, phenotypic analysis and pathogenicity analysis were performed on knockout and complement strains of HTF2-the transcriptional regulator of tea anthracnose homeobox-and the pathogenic mechanism of these strains was explored via RNA-seq. The MoHox1 gene sequence of the rice blast fungus was indexed, and the anthracnose genome was searched for CfHTF2. Evolutionary analysis recently reported the affinity of HTF2 for C. fructicola and C. higginsianum. The loss of CfHTF2 slowed the vegetative growth and spore-producing capacity of C. fructicola and weakened its resistance and pathogenesis to adverse conditions. The transcriptome sequencing of wild-type N425 and CfHTF2 deletion mutants was performed, and a total of 3144 differentially expressed genes (DEGs) were obtained, 1594 of which were upregulated and 1550 of which were downregulated. GO and KEGG enrichment analyses of DEGs mainly focused on signaling pathways such as the biosynthesis of secondary metabolites. In conclusion, this study lays a foundation for further study of the pathogenic mechanism of tea anthracnose and provides a molecular basis for the analysis of the pathogenic molecular mechanism of CfHTF2.


Subject(s)
Camellia sinensis , Osmoregulation , Spores, Fungal , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Camellia sinensis/genetics , Camellia sinensis/metabolism , Tea/genetics
3.
Sci Rep ; 13(1): 18160, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875523

ABSTRACT

Process development for transferring lab-scale research workflows to automated manufacturing procedures is critical for chimeric antigen receptor (CAR)-T cell therapies. Therefore, the key factor for cell viability, expansion, modification, and functionality is the optimal combination of medium and T cell activator as well as their regulatory compliance for later manufacturing under Good Manufacturing Practice (GMP). In this study, we compared two protocols for CAR-mRNA-modified T cell generation using our current lab-scale process, analyzed all mentioned parameters, and evaluated the protocols' potential for upscaling and process development of mRNA-based CAR-T cell therapies.


Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Cytokines , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/genetics
4.
Zootaxa ; 5133(1): 133-142, 2022 May 03.
Article in English | MEDLINE | ID: mdl-36101107

ABSTRACT

A new species of clearwing moth, Synanthedon suhua sp. nov., is described from Taiwan in this article. Adults and genitalia of both sexes are illustrated, DNA barcodes provided, and potential damage to Quercus longinux (Fagaceae) discussed.


Subject(s)
Moths , Quercus , Animals , Female , Male , Taiwan
5.
Ecotoxicol Environ Saf ; 211: 111914, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33454593

ABSTRACT

Bioremediation of Cd contaminated environments can be assisted by plant-growth-promoting bacteria (PGPB) enabling plant growth in these sites. Here a gram-negative Burkholderia contaminans ZCC was isolated from mining soil at a copper-gold mine. When exposed to Cd(II), ZCC displayed high Cd resistance and the minimal inhibitory concentration was 7 mM in LB medium. Complete genome analysis uncovered B. contaminans ZCC contained 3 chromosomes and 2 plasmids. One of these plasmids was shown to contain a multitude of heavy metal resistance determinants including genes encoding a putative Cd-translocating PIB-type ATPase and an RND-type related to the Czc-system. These additional heavy metal resistance determinants are likely responsible for the increased resistance to Cd(II) and other heavy metals in comparison to other strains of B. contaminans. B. contaminans ZCC also displayed PGPB traits such as 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore production, organic and inorganic phosphate solubilization and indole acetic acid production. Moreover, the properties and Cd(II) binding characteristics of extracellular polymeric substances was investigated. ZCC was able to induce extracellular polymeric substances production in response to Cd and was shown to be chemically coordinated to Cd(II). It could promote the growth of soybean in the presence of elevated concentrations of Cd(II). This work will help to better understand processes important in bioremediation of Cd-contaminated environment.


Subject(s)
Adaptation, Physiological/physiology , Burkholderia/physiology , Cadmium/toxicity , Soil Pollutants/toxicity , Biodegradation, Environmental , Cadmium/metabolism , Indoleacetic Acids , Metals, Heavy/analysis , Mining , Plant Development , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Glycine max/metabolism
6.
Front Pediatr ; 8: 536, 2020.
Article in English | MEDLINE | ID: mdl-33014932

ABSTRACT

Functional profiling of CFTR-directed therapeutics offers the potential to provide significant benefits to young people with cystic fibrosis (CF). However, the development of 2D airway epithelial cell models for individual response tests in CF children remains a central task. The objective of this study was to determine the utility of EpiXTM technology for expansion of nasal epithelial cells for use in electrophysiological CFTR function measurements. An initial harvest of as few as 20,000 cells was sufficient to expand up to 50 million cells that were used to generate air-liquid interface (ALI) cultures for ion transport studies with the Ussing assay. CFTR function was assessed by measuring responses to forskolin and the CFTR potentiator VX-770 (ivacaftor) in ALI cultures generated from passage 3 and 4 cells. Short-circuit current (Isc) measurements of blocked CFTR currents (ΔICFTRinh) discriminated CFTR function between healthy control (wild type, WT) and patients with intermediate (F508del/R117H-7T: 56% WT) and severe (F508del/F508del: 12% WT) CF disease. For the mixed genotypes, CFTR activity for F508del/c.850dupA was 12% WT, R334W/406-1G>A was 24% WT, and CFTRdele2,3(21 kb)/CFTRdele2,3(21 kb) was 9% WT. The CFTR correctors VX-809 (lumacaftor) and VX-661 (tezacaftor) significantly increased CFTR currents for F508del/R117H to 73 and 67% WT, respectively. Cultures with the large deletion mutation CFTRdele2,3(21 kb) unexpectedly responded to VX-661 treatment (20% WT). Amiloride-sensitive sodium currents were robust and ranged between 20-80 µA/cm2 depending on the subject. In addition to characterizing the electrophysiological profile of mutant CFTR activity in cultures for five genotypes, our study exemplifies the promising paradigm of bed-to-bench side cooperation and personalized medicine.

7.
Curr Genet ; 65(4): 1041-1055, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30927052

ABSTRACT

Ubiquitinated biosynthetic and surface proteins destined for degradation are sorted into the lysosome/vacuole via the multivesicular body sorting pathway, which depends on the function of ESCRT machinery. Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases for wheat and barley worldwide. To better understand the role of ESCRT machinery in F. graminearum, we investigated the function of ESCRT-III accessory proteins FgVps60, FgDid2 and FgIst1 in this study. FgVps60-GFP, FgDid2-GFP and FgIst1-GFP are localized to punctate structures adjacent to the vacuolar membrane except for FgIst1-GFP that is also found in the nucleus. Then, the gene deletion mutants ΔFgvps60, ΔFgdid2 and ΔFgist1 displayed defective growth to a different extent. ΔFgvps60 and ΔFgdid2 but not ΔFgist1 also showed significant reduction in hydrophobicity on cell surface, conidiation, perithecia production and virulence. Interestingly, ΔFgist1 mutant produced a significantly higher level of DON while showing a minor reduction in pathogenicity. Microscopic analyses revealed that FgVps60 but not FgIst1 and FgDid2 is necessary for endocytosis. Moreover, spontaneous mutations were identified in the ΔFgvps60 mutant that partially rescued its defects in growth and conidiation. Taken together, we conclude that ESCRT-III accessory proteins play critical roles in growth, reproduction and plant infection in F. graminearum.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Fungal Proteins/genetics , Fusarium/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Spores, Fungal/genetics , Spores, Fungal/pathogenicity , Triticum/genetics , Triticum/microbiology
8.
Front Microbiol ; 10: 180, 2019.
Article in English | MEDLINE | ID: mdl-30809208

ABSTRACT

Multivesicular bodies (MVBs) are critical intermediates in the trafficking of ubiquitinated endocytosed surface proteins to the lysosome/vacuole for destruction. Recognizing and packaging ubiquitin modified cargoes to the MVB pathway require ESCRT (Endosomal sorting complexes required for transport) machinery, which consists of four core subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. Our previous results showed that ESCRT-0 is essential for fungal development and pathogenicity in Fusarium graminearum. We then, in this study, systemically studied the protein-protein interactions within F. graminearum ESCRT-I, -II or -III complex, as well as between ESCRT-0 and ESCRT-I, ESCRT-I and ESCRT-II, and ESCRT-II and ESCRT-III complexes and found that loss of any ESCRT component resulted in abnormal function in endocytosis. In addition, ESCRT deletion mutants displayed severe defects in growth, deoxynivalenol (DON) production, virulence, sexual, and asexual reproduction. Importantly genetic complementation with corresponding ESCRT genes fully rescued all these defective phenotypes, indicating the essential role of ESCRT machinery in fungal development and plant infection in F. graminearum. Taken together, the protein-protein interactome and biological functions of the ESCRT machinery is first profoundly characterized in F. graminearum, providing a foundation for further exploration of ESCRT machinery in filamentous fungi.

9.
Article in English | MEDLINE | ID: mdl-30533765

ABSTRACT

Here, we report the features and draft genome sequence of Pseudarthrobacter sp. strain AG30, isolated from the Zijin gold and copper mine in China. The genome size of Pseudarthrobacter sp. AG30 was 4,618,494 bp, with a G+C content of 66.2%. Interesting genes and operons putatively conferring resistance to copper and arsenic were identified.

10.
Front Microbiol ; 9: 2473, 2018.
Article in English | MEDLINE | ID: mdl-30405552

ABSTRACT

Arsenic is a metalloid that occurs naturally in aquatic and terrestrial environments. The high toxicity of arsenic derivatives converts this element in a serious problem of public health worldwide. There is a global arsenic geocycle in which microbes play a relevant role. Ancient exposure to arsenic derivatives, both inorganic and organic, has represented a selective pressure for microbes to evolve or acquire diverse arsenic resistance genetic systems. In addition, arsenic compounds appear to have been used as a toxin in chemical warfare for a long time selecting for an extended range of arsenic resistance determinants. Arsenic resistance strategies rely mainly on membrane transport pathways that extrude the toxic compounds from the cell cytoplasm. The ars operons, first discovered in bacterial R-factors almost 50 years ago, are the most common microbial arsenic resistance systems. Numerous ars operons, with a variety of genes and different combinations of them, populate the prokaryotic genomes, including their accessory plasmids, transposons, and genomic islands. Besides these canonical, widespread ars gene clusters, which confer resistance to the inorganic forms of arsenic, additional genes have been discovered recently, which broadens the spectrum of arsenic tolerance by detoxifying organic arsenic derivatives often used as toxins. This review summarizes the presence, distribution, organization, and redundance of arsenic resistance genes in prokaryotes.

11.
J Circadian Rhythms ; 16: 13, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30473715

ABSTRACT

In mammals, the master pacemaker driving circadian rhythms is thought to reside in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. A clear view of molecular clock mechanisms within the SCN neurons has been elucidated. In contrast, much less is known about the output mechanism by which the SCN circadian pacemaker sends timing information for eventual control of physiological and behavioral rhythms. Two secreted molecules, prokineticin 2 (PK2) and vasopressin, that are encoded by respective clock-controlled genes, have been indicated as candidate SCN output molecules. Several lines of evidence have emerged that support the role of PK2 as an output signal for the SCN circadian clock, including the reduced circadian rhythms in mice that are deficient in PK2 or its receptor, PKR2. In the current study, transgenic mice with the overexpression of PK2 have been generated. These transgenic mice displayed reduced oscillation of the PK2 expression in the SCN and decreased amplitude of circadian locomotor rhythm, supporting the important signaling role of PK2 in the regulation of circadian rhythms. Altered molecular rhythms were also observed in the SCN in the transgenic mice, indicating that PK2 signaling also regulates the operation of core clockwork. This conclusion is consistent with recent reports showing the likely signaling role of PK2 from the intrinsically photosensitive retinal ganglion cells to SCN neurons. Thus, PK2 signaling plays roles in both the input and the output pathways of the SCN circadian clock.

12.
Cell Rep ; 25(3): 598-610.e5, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332641

ABSTRACT

Despite substantial self-renewal capability in vivo, epithelial stem and progenitor cells located in various tissues expand for a few passages in vitro in feeder-free condition before they succumb to growth arrest. Here, we describe the EpiX method, which utilizes small molecules that inhibit PAK1-ROCK-Myosin II and TGF-ß signaling to achieve over one trillion-fold expansion of human epithelial stem and progenitor cells from skin, airway, mammary, and prostate glands in the absence of feeder cells. Transcriptomic and epigenomic studies show that this condition helps epithelial cells to overcome stresses for continuous proliferation. EpiX-expanded basal epithelial cells differentiate into mature epithelial cells consistent with their tissue origins. Whole-genome sequencing reveals that the cells retain remarkable genome integrity after extensive in vitro expansion without acquiring tumorigenicity. EpiX technology provides a solution to exploit the potential of tissue-resident epithelial stem and progenitor cells for regenerative medicine.


Subject(s)
Epithelial Cells/cytology , Myosin Type II/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Stem Cells/cytology , Transforming Growth Factor beta/antagonists & inhibitors , p21-Activated Kinases/antagonists & inhibitors , rho-Associated Kinases/antagonists & inhibitors , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Feeder Cells/cytology , Feeder Cells/drug effects , Feeder Cells/metabolism , Gene Expression Regulation/drug effects , Humans , In Vitro Techniques , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Myosin Type II/genetics , Myosin Type II/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction , Stem Cells/drug effects , Stem Cells/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor Assays , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
13.
Front Microbiol ; 9: 1209, 2018.
Article in English | MEDLINE | ID: mdl-29930543

ABSTRACT

Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum. Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene (FgBUD3) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum. Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum.

14.
Mol Plant Pathol ; 19(2): 328-340, 2018 02.
Article in English | MEDLINE | ID: mdl-27935243

ABSTRACT

As a typical foliar pathogen, appressorium formation and penetration are critical steps in the infection cycle of Magnaporthe oryzae. Because appressorium formation and penetration are closely co-regulated with the cell cycle, and Cdc14 phosphatases have an antagonistic relationship with cyclin-dependent kinases (CDKs) on proteins related to mitotic exit and cytokinesis, in this study, we functionally characterized the MoCDC14 gene in M. oryzae. The Mocdc14 deletion mutant showed significantly reduced growth rate and conidiation. It was also defective in septum formation and nuclear distribution. Septation was irregular in Mocdc14 hyphae and hyphal compartments became multi-nucleate. Mutant conidia often showed incomplete septa or lacked any septum. During appressorium formation, the septum delimiting appressoria from the rest of the germ tubes was often formed far away from the neck of the appressoria or not formed at all. Unlike the wild-type, some mutant appressoria had more than one nucleus at 24 h. In addition to appressoria, melanization occurred on parts of the germ tubes and conidia, depending on the irregular position of the appressorium-delimiting septum. The Mocdc14 mutant was also defective in glycogen degradation during appressorium formation and appressorial penetration of intact plant cells. Similar defects in septum formation, melanization and penetration were observed with appressorium-like structures formed at hyphal tips in the Mocdc14 mutant. Often a long fragment of mutant hyphae was melanized, together with the apical appressorium-like structures. These results indicate that MoCDC14 plays a critical role in septation, nuclear distribution and pathogenesis in M. oryzae, and correct septum formation during conidiogenesis and appressorium formation requires the MoCdc14 phosphatase.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/metabolism , Magnaporthe/physiology , Oryza/metabolism , Oryza/microbiology , Cell Cycle/genetics , Cell Cycle/physiology , Fungal Proteins/genetics , Oryza/genetics , Virulence/genetics , Virulence/physiology
15.
Environ Microbiol ; 18(11): 3689-3701, 2016 11.
Article in English | MEDLINE | ID: mdl-26940955

ABSTRACT

The biosynthesis of mycotoxin deoxynivalenol (DON) in Fusarium graminearum is regulated by two pathway-specific transcription factors Tri6 and Tri10 and affected by various host and environmental factors. In this study, we showed that cyclic adenosine monophosphate (cAMP) treatment induced DON production by stimulating TRI gene expression and DON-associated cellular differentiation in F. graminearum. Interestingly, exogenous cAMP had no effects on the tri6 mutant but partially recovered the defect of tri10 mutant in DON biosynthesis. Although the two cAMP phosphodiesterase genes PDE1 and PDE2 had overlapping functions in vegetative growth, conidiation, sexual reproduction and plant infection, deletion of PDE2 but not PDE1 activated intracellular PKA activities and increased DON production. Whereas the tri6 pde2 mutant failed to produce DON, the tri10 pde2 double mutant produced a significantly higher level of DON than the tri10 mutant. Cellular differentiation associated with DON production was stimulated by exogenous cAMP or deletion of PDE2 in both tri10 and tri6 mutants. These data indicate that TRI6 is essential for the regulation of DON biosynthesis by cAMP signalling but elevated PKA activities could partially bypass the requirement of TRI10 for TRI gene-expression and DON production, and Pde2 is the major cAMP phosphodiesterase to negatively regulate DON biosynthesis in F. graminearum.


Subject(s)
Cyclic AMP/metabolism , Fungal Proteins/metabolism , Fusarium/metabolism , Spores, Fungal/growth & development , Transcription Factors/metabolism , Trichothecenes/biosynthesis , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/growth & development , Gene Expression Regulation, Fungal , Sequence Deletion , Signal Transduction , Spores, Fungal/genetics , Spores, Fungal/metabolism , Transcription Factors/genetics
16.
FEMS Microbiol Lett ; 363(1): fnv223, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26607286

ABSTRACT

Fusarium graminearum is a filamentous fungal pathogen that causes wheat Fusarium head blight. In this study, we identified FgNoxR, a regulatory subunit of NADPH oxidases (Nox) in F. graminearum, and found that it plays an important role in the pathogenicity of F. graminearum. FgNoxR is localized on punctate structures throughout the cytoplasm in aerial hyphae while these structures tend to accumulate at or near the plasma membrane, septa and hyphal tips in germinated conidia. Deletion of the FgNOXR gene results in reduced conidiation and germination. Importantly, sexual development is totally abolished in the FgNOXR deletion mutant. In addition, the disease lesion of FgNOXR deletion mutant is limited to the inoculated spikelets of wheat heads. Finally, FgNoxR interacts with FgRac1 and FgNoxA, and all three proteins are required for female fertility. Taken together, our data indicate that FgNoxR contributes to conidiation, sexual reproduction and pathogenesis in F. graminearum.


Subject(s)
Fusarium/pathogenicity , Genes, Regulator , NADP/metabolism , Oxidoreductases/metabolism , Plant Diseases/microbiology , Transcription Factors/metabolism , Virulence Factors/metabolism , Fusarium/genetics , Fusarium/growth & development , Gene Deletion , Hyphae/growth & development , Microbiological Techniques , Microscopy , NADP/genetics , Oxidoreductases/genetics , Protein Interaction Mapping , Spores, Fungal/growth & development , Transcription Factors/genetics , Triticum/microbiology , Virulence Factors/genetics
17.
PLoS Genet ; 11(12): e1005704, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26658729

ABSTRACT

The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus.


Subject(s)
Magnaporthe/genetics , Oryza/genetics , Plant Diseases/genetics , Protein Transport/genetics , Amino Acid Sequence , Autophagy/genetics , Glycogen/metabolism , Host-Pathogen Interactions/genetics , Lipid Droplets/metabolism , Magnaporthe/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Vacuoles/genetics , Vacuoles/microbiology , trans-Golgi Network/genetics
18.
Front Microbiol ; 6: 1096, 2015.
Article in English | MEDLINE | ID: mdl-26500635

ABSTRACT

Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a possibly carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

19.
PLoS One ; 9(3): e90860, 2014.
Article in English | MEDLINE | ID: mdl-24633064

ABSTRACT

The possible signaling role of prokineticin 2 (PK2) and its receptor, prokineticin receptor 2 (PKR2), on female reproduction was investigated. First, the expression of PKR2 and its co-localization with estrogen receptor (ERα) in the hypothalamus was examined. Sexually dimorphic expression of PKR2 in the preoptic area of the hypothalamus was observed. Compared to the male mice, there was more widespread PKR2 expression in the preoptic area of the hypothalamus in the female mice. The likely co-expression of PKR2 and ERα in the preoptic area of the hypothalamus was observed. The estrous cycles in female PK2-null, and PKR2-null heterozygous mice, as well as in PK2-null and PKR2-null compound heterozygous mice were examined. Loss of one copy of PK2 or PKR2 gene caused elongated and irregular estrous cycle in the female mice. The alterations in the estrous cycle were more pronounced in PK2-null and PKR2-null compound heterozygous mice. Consistent with these observations, administration of a small molecule PK2 receptor antagonist led to temporary blocking of estrous cycle at the proestrous phase in female mice. The administration of PKR2 antagonist was found to blunt the circulating LH levels. Taken together, these studies indicate PK2 signaling is required for the maintenance of normal female estrous cycles.


Subject(s)
Estrous Cycle/physiology , Gastrointestinal Hormones/metabolism , Neuropeptides/metabolism , Animals , Estrogen Receptor alpha/metabolism , Estrous Cycle/drug effects , Female , Gastrointestinal Hormones/antagonists & inhibitors , Gastrointestinal Hormones/genetics , Hypothalamus/metabolism , Mice , Mice, Knockout , Neuropeptides/antagonists & inhibitors , Neuropeptides/genetics
20.
Fungal Genet Biol ; 61: 90-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24055721

ABSTRACT

Rho GTPases have multiple cellular and metabolic functions, including vesicular trafficking and pathogenesis, as signaling molecules in fungi. Wheat scab, caused by Fusarium graminearum, is one of the most important wheat diseases worldwide, yet the mechanisms associated with making this fungus such a devastating pathogen remain largely ambiguous. In an effort to better understand F. graminearum virulence, we functionally characterized all six Rho GTPases in F. graminearum. FgRHO1 was determined to be essential for fungal survival, while FgRho3 demonstrated functions only in vegetative growth and conidiation. Other four Rho GTPases, FgRho2, FgRho4, FgCdc42 and FgRac1, were multifunctional and were involved in sexual development and pathogenesis. While FgRho2 and FgRho4 were both involved in cell wall integrity, only FgRho4 showed a role in nuclear division and septum formation. FgRho4, FgCdc42 and FgRac1 were also important for hyphal growth and conidiation. All single deletion mutants showed impaired growth, particularly in conidial morphology, when compared to the wild-type progenitor. FgRac1 deletion mutants displayed a precocious, multi-site germ tube formation as well as hyperbranching of hyphae. Significantly we learned that FgRac1 negatively controls DON production whereas FgRho4 plays a positive role. FgCla4 was identified as a downstream target of FgRac1, but was dispensable for sexual development. We determined that FgRho GTPases contribute diversely to growth, conidiogenesis, sexual reproduction, DON production and pathogenesis in F. graminearum.


Subject(s)
Fusarium/physiology , Gene Expression Regulation, Fungal , rho GTP-Binding Proteins/metabolism , Fusarium/genetics , Fusarium/growth & development , Fusarium/pathogenicity , Gene Deletion , Microbial Viability , Plant Diseases/microbiology , Spores, Fungal/growth & development , Triticum/microbiology , rho GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...