Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Heliyon ; 10(11): e32013, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867994

ABSTRACT

The aim of this study was to investigate the effects of temporal instability and possible heterogeneity on pedestrian accident severity, 48786 accident data from 2018 to 2021 in the UK STATS database were used as the study object, and accident severity was used as the dependent variable, and 49 accident characteristics were selected as independent variables from 6 characteristics of accident pedestrian, driver, vehicle, road, environment and time to construct the pedestrian accident mean heterogeneity random-parameter logit model and examined its temporal stability. The results of model estimation and likelihood ratio tests indicate that the variables affecting pedestrian injury severity are highly variable and not stable over the years. And further demonstrates the potential of models that address unobserved heterogeneity for significant relationships in pedestrian accident severity analyses.

2.
Plant Physiol Biochem ; 211: 108695, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744088

ABSTRACT

The presence of sugar in plant tissue can lead to an increase in the osmotic pressure within cells, a decrease in the freezing point of plants, and protection against ice crystal damage to the tissue. Trehalose is closely related to sucrose, which comprises the largest proportion of sugar and has become a hot topic of research in recent years. Our previous studies have confirmed that a key trehalose synthesis gene, TaTPS11, from the cold-resistant winter wheat DM1, could enhance the cold resistance of plants by increasing sugar content. However, the underlying mechanism behind this phenomenon remains unclear. In this study, we cloned TaTPS11-6D, edited TaTPS11-6D using CRISPR/Cas9 technology and transformed 'Fielder' to obtain T2 generation plants. We screened out OE3-3 and OE8-7 lines with significantly higher cold resistance than that of 'Fielder' and Cri 4-3 edited lines with significantly lower cold resistance than that of 'Fielder'. Low temperature storage limiting factors were measured for OE3-3, OE8-7 and Cri 4-3 treated at different temperatures.The results showed that TaTPS11-6D significantly increased the content of sugar in plants and the transfer of sugar from source to storage organs under cold conditions. The TaTPS11-6D significantly increased the levels of salicylic, jasmonic, and abscisic acids while also significantly decreasing the level of gibberellic acid. Our research improves the model of low temperature storage capacity limiting factor.


Subject(s)
Cold Temperature , Plant Proteins , Triticum , Triticum/genetics , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Trehalose/metabolism , Abscisic Acid/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Gibberellins/metabolism , Sucrose/metabolism
3.
IUCrJ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38727172

ABSTRACT

X-ray scattering/diffraction tensor tomography techniques are promising methods to acquire the 3D texture information of heterogeneous biological tissues at micrometre resolution. However, the methods suffer from a long overall acquisition time due to multi-dimensional scanning across real and reciprocal space. Here, a new approach is introduced to obtain 3D reciprocal information of each illuminated scanning volume using mathematic modeling, which is equivalent to a physical scanning procedure for collecting the full reciprocal information required for voxel reconstruction. The virtual reciprocal scanning scheme was validated by a simulated 6D wide-angle X-ray diffraction tomography experiment. The theoretical validation of the method represents an important technological advancement for 6D diffraction tensor tomography and a crucial step towards pervasive applications in the characterization of heterogeneous materials.

4.
Environ Sci Technol ; 58(21): 9227-9235, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751196

ABSTRACT

Severe ozone (O3) pollution has been a major air quality issue and affects environmental sustainability in China. Conventional mitigation strategies focusing on reducing volatile organic compounds and nitrogen oxides (NOx) remain complex and challenging. Here, through field flux measurements and laboratory simulations, we observe substantial nitrous acid (HONO) emissions (FHONO) enhanced by nitrogen fertilizer application at an agricultural site. The observed FHONO significantly improves model performance in predicting atmospheric HONO and leads to regional O3 increases by 37%. We also demonstrate the significant potential of nitrification inhibitors in reducing emissions of reactive nitrogen, including HONO and NOx, by as much as 90%, as well as greenhouse gases like nitrous oxide by up to 60%. Our findings introduce a feasible concept for mitigating O3 pollution: reducing soil HONO emissions. Hence, this study has important implications for policy decisions related to the control of O3 pollution and climate change.


Subject(s)
Nitrous Acid , Ozone , Soil , Nitrous Acid/chemistry , Soil/chemistry , Air Pollution/prevention & control , Air Pollutants , China , Climate Change , Nitrous Oxide
5.
Mar Pollut Bull ; 203: 116485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754319

ABSTRACT

In this study, the accumulation rate of plastic litter was investigated by sampling quadrats placed on the North Island of Qilianyu, and the composition was analyzed and identified to determine its source. The results showed that the annual average accumulation rate of plastic litter on North Island was 0.64 ± 0.32 pieces·m-2·month-1, with a mass accumulation rate of 11.30 ± 7.73 g·m-2·month-1. The accumulation rate of plastic litter was mainly influenced by wind speed and direction, with higher accumulation rates occurring during the southwest monsoon season and tropical cyclones. ATR-FTIR analysis indicated that polyethylene (44 %) and polypropylene (41 %) were the most abundant types of polymers. This study reveals the current status of plastic litter pollution in green turtle nesting grounds on North Island in Qilianyu, which can be used as a reference for management strategies that mitigate plastic litter pollution.


Subject(s)
Environmental Monitoring , Plastics , Turtles , Animals , Plastics/analysis , China , Water Pollutants, Chemical/analysis , Islands , Nesting Behavior
6.
Nat Commun ; 15(1): 4407, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782885

ABSTRACT

Topological flat bands - where the kinetic energy of electrons is quenched - provide a platform for investigating the topological properties of correlated systems. Here, we report the observation of a topological flat band formed by polar-distortion-assisted Rashba splitting in the three-dimensional Dirac material ZrTe5. The polar distortion and resulting Rashba splitting on the band are directly detected by torque magnetometry and the anomalous Hall effect, respectively. The local symmetry breaking further flattens the band, on which we observe resistance oscillations beyond the quantum limit. These oscillations follow the temperature dependence of the Lifshitz-Kosevich formula but are evenly distributed in B instead of 1/B at high magnetic fields. Furthermore, the cyclotron mass gets anomalously enhanced about 102 times at fields ~ 20 T. Our results provide an intrinsic platform without invoking moiré or order-stacking engineering, which opens the door for studying topologically correlated phenomena beyond two dimensions.

7.
Sci Rep ; 14(1): 11756, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783024

ABSTRACT

Visual place recognition (VPR) involves obtaining robust image descriptors to cope with differences in camera viewpoints and drastic external environment changes. Utilizing multiscale features improves the robustness of image descriptors; however, existing methods neither exploit the multiscale features generated during feature extraction nor consider the feature redundancy problem when fusing multiscale information when image descriptors are enhanced. We propose a novel encoding strategy-convolutional multilayer perceptron orthogonal fusion of multiscale features (ConvMLP-OFMS)-for VPR. A ConvMLP is used to obtain robust and generalized global image descriptors and the multiscale features generated during feature extraction are used to enhance the global descriptors to cope with changes in the environment and viewpoints. Additionally, an attention mechanism is used to eliminate noise and redundant information. Compared to traditional methods that use tensor splicing for feature fusion, we introduced matrix orthogonal decomposition to eliminate redundant information. Experiments demonstrated that the proposed architecture outperformed NetVLAD, CosPlace, ConvAP, and other methods. On the Pittsburgh and MSLS datasets, which contained significant viewpoint and illumination variations, our method achieved 92.5% and 86.5% Recall@1, respectively. We also achieved good performances-80.6% and 43.2%-on the SPED and NordLand datasets, respectively, which have more extreme illumination and appearance variations.

8.
Phys Med Biol ; 69(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38593815

ABSTRACT

Objective. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.Approach. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.Main results.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.Significance.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andin vivocell tracking.


Subject(s)
Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods , Time Factors , Phantoms, Imaging , Molecular Imaging/methods
9.
Phys Rev E ; 109(3-2): 035205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632769

ABSTRACT

The double-cone ignition (DCI) scheme has been proposed as one of the alternative approaches to inertial confinement fusion, based on direct-drive and fast-ignition, in order to reduce the requirement for the driver energy. To evaluate the conical implosion energetics from the laser beams to the plasma flows, a series of experiments have been systematically conducted. The results indicate that 89%-96% of the laser energy was absorbed by the target, with moderate stimulated Raman scatterings. Here 2%-6% of the laser energy was coupled into the plasma jets ejected from the cone tips, which was mainly restricted by the mass reductions during the implosions inside the cones. The supersonic dense jets with a Mach number of 4 were obtained, which is favorable for forming a high-density, nondegenerated plasma core after the head-on collisions. These findings show encouraging results in terms of energy transport of the conical implosions in the DCI scheme.

10.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666490

ABSTRACT

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Vitis , Xanthophylls , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Xanthophylls/metabolism , Vitis/metabolism , Vitis/microbiology , Vitis/chemistry , Oxidation-Reduction , Zeaxanthins/metabolism , Zeaxanthins/biosynthesis , NADP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics
11.
Environ Sci Technol ; 58(13): 5911-5920, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38437592

ABSTRACT

HONO acts as a major OH source, playing a vital role in secondary pollutant formation to deteriorate regional air quality. Strong unknown sources of daytime HONO have been widely reported, which significantly limit our understanding of radical cycling and atmospheric oxidation capacity. Here, we identify a potential daytime HONO and OH source originating from photoexcited phenyl organic nitrates formed during the photoreaction of aromatics and NOx. Significant HONO (1.56-4.52 ppb) and OH production is observed during the photoreaction of different kinds of aromatics with NOx (18.1-242.3 ppb). We propose an additional mechanism involving photoexcited phenyl organic nitrates (RONO2) reacting with water vapor to account for the higher levels of measured HONO and OH than the model prediction. The proposed HONO formation mechanism was evidenced directly by photolysis experiments using typical RONO2 under UV irradiation conditions, during which HONO formation was enhanced by relative humidity. The 0-D box model incorporated in this mechanism accurately reproduced the evolution of HONO and aromatic. The proposed mechanism contributes 5.9-36.6% of HONO formation as the NOx concentration increased in the photoreaction of aromatics and NOx. Our study implies that photoexcited phenyl organic nitrates are an important source of atmospheric HONO and OH that contributes significantly to atmospheric oxidation capacity.


Subject(s)
Environmental Pollutants , Nitrous Acid , Nitrous Acid/analysis , Hydroxyl Radical , Oxidation-Reduction , Ultraviolet Rays , Nitrates
12.
Waste Manag ; 178: 351-361, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38430749

ABSTRACT

The traditional hydrometallurgy technology has been widely used to recover precious metals from electronic waste. However, such aqueous recycling systems often employ toxic/harsh chemicals, which may cause serious environmental problems. Herein, an efficient and environment-friendly method using a deep eutectic solvent (DES) mixed system of choline chloride-ethylene glycol-CuCl2·2H2O is developed for gold (Au) recovery from flexible printed circuit boards (FPCBs). The Au leaching and precipitation efficiency can reach approximately 100 % and 95.3 %, respectively, under optimized conditions. Kinetic results show that the Au leaching process follows a nucleation model, which is controlled by chemical surface reactions with an apparent activation energy of 80.29 kJ/mol. The present recycling system has a much higher selectivity for Au than for other base metals; the two-step recovery rate of Au can reach over 95 %, whereas those of copper and nickel are < 2 %. Hydrogen nuclear magnetic resonance spectroscopy (HNMR) and density functional theory (DFT) analyses confirm the formation of intermolecular hydrogen bonds in the DES mixed system, which increase the system melting and boiling points and facilitate the Au leaching process. The Au leaching system can be reused for several times, with the leaching efficiency remaining > 97 % after five cycles. Moreover, ethylene glycol (EG) and choline chloride (ChCl) act as aprotic solvents as well as coordinate with metals, decreasing the redox potential to shift the equilibrium to the leaching side. Overall, this research provides a theoretical and a practical basis for the recovery of metals from FPCBs.


Subject(s)
Electronic Waste , Gold , Gold/chemistry , Choline , Copper/chemistry , Recycling/methods , Electronic Waste/analysis , Ethylene Glycols
13.
Article in English | MEDLINE | ID: mdl-38251672

ABSTRACT

Aims: Mitochondrial homeostasis is essential for maintaining redox balance. Besides canonical autophagy, Rab9-dependent alternative autophagy is a crucial mechanism in metabolic cardiomyopathy. Here, we aim to investigate the role of alternative mitophagy and Beclin 1 haploinsufficiency (Beclin 1+/-) in high-fat diet (HFD)-induced metabolic cardiomyopathy. Results: Twenty-four-week HFD impaired glucose tolerance and cardiomyocyte contraction in wild-type mice, both of which were rescued in Beclin 1+/- mice. Beclin 1 haploinsufficiency had little effect on the conventional autophagy mediators (ATG5, LC3 II/LC3 I) but further upregulated Rab9 expression, a marker of alternative autophagy, in response to HFD challenge. Furthermore, either the inhibition of alternative autophagy or Beclin 1 haploinsufficiency abolished palmitic acid (PA)-induced cardiomyocyte contractile anomalies. In vitro, PA overactivated mitophagy, resulting in decreased mitochondrial content in H9C2 cells. These aberrations were alleviated in cells deficient in alternative autophagy but not in cells deficient in conventional autophagy. Mechanistically, HFD promoted reactive oxygen species (ROS) production, activated Rab9-dependent alternative mitophagy, and inhibited mitochondrial biosynthesis. Beclin 1+/- rescued HFD-induced ROS overflow, mitochondrial biogenesis impairment, and prevented Rab9 translocation from the cytoplasm to the mitochondria, thereby inhibiting Rab9-mediated mitophagy overactivation. Innovation: For the first time, this study suggests that prolonged alternative mitophagy exacerbates chronic HFD-induced cardiac dysfunction and supports the protective role of Beclin 1 haploinsufficiency in metabolic cardiomyopathy. This provides additional evidence for a target-based pharmacological intervention. Conclusion: Beclin 1 haploinsufficiency protects against HFD-induced cardiac dysfunction by inhibiting Rab9-dependent alternative mitophagy and ROS production, while promoting mitochondrial biogenesis. Modulating Beclin 1 expression holds promise in preventing chronic HFD-related cardiomyopathy.

14.
Curr Protoc ; 4(1): e956, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38230581

ABSTRACT

The integration of fluorine atoms into biologically active organic compounds has proved to be a vital technique in small molecule drugs. This technique can substantially enhance crucial properties, including metabolic stability, lipophilicity, and bioavailability, often with a mere addition of a single fluorine atom or a trifluoromethyl group. Over the past few decades, this concept has also been applied in nucleic acid chemistry. A commonly employed 2'-OH substitution is the introduction of a 2'-deoxy-2'-fluoro (2'-F) group. The strong electronegativity of fluorine prompts the modified siRNA to readily adopt a C3'-endo conformation, resulting in significant advantages in terms of binding affinity. To enrich the toolbox of chemical modification of oligonucleotides, the replacement of the 2'-OH with the 2'-O-trifluoromethyl group has been developed in RNA analog synthesis. Oligodeoxynucleotides containing the 2'-O-trifluoromethyl group can greatly increase the thermal stability of DNA/RNA duplexes depending on the position and amount of the modification. Moreover, 2'-O-trifluoromethylated oligodeoxynucleotide also exhibited a slightly higher resistance to snake venom phosphodiesterase than the unmodified oligodeoxynucleotide. The 2'-O-trifluoromethylated oligonucleotides can emerge as a label to study RNA structure and function as well, or to develop DNA/RNA-based diagnostics. Hence, it is necessary to report an effective method for the synthesis, deprotection, purification, and characterization of oligonucleotides bearing a 2'-O-trifluoromethyl group. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 6-N-benzoyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl adenosine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 2: Preparation of 4-N-acetyl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl cytidine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 3: Preparation of 2-N-isobutyryl-5'-O-dimethoxytrityl-2'-O-trifluoromethyl guanine 3'-(2-cyanoethyl N,N-diisopropyl)phosphoramidite Basic Protocol 4: Preparation of 5'-O-dimethoxytrityl-2'-O-2-trifluoromethyl uridine 3'-(2-cyanoethyl N,N-diisopropyl) phosphoramidite Basic Protocol 5: Solid-phase synthesis of 2'-O-trifluoromethylated RNA analogs Basic Protocol 6: Deprotection and purification of 2'-O-trifluoromethyl-RNAs.


Subject(s)
Nucleotides , Organophosphorus Compounds , RNA , RNA/chemistry , Fluorine , Oligonucleotides/chemistry , Oligodeoxyribonucleotides/chemistry , DNA
15.
Phys Med Biol ; 69(3)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38168021

ABSTRACT

Objective. Imaging of superparamagnetic iron oxide nanoparticles based on their non-linear response to alternating magnetic fields shows promise for imaging cells and vasculature in healthy and diseased tissue. Such imaging can be achieved through x-space reconstruction typically along a unidirectional Cartesian trajectory, which rapidly convolutes the particle distribution with a 'anisotropic blurring' point spread function (PSF), leading to images with anisotropic resolution.Approach. Here we propose combining the time domine-system matrix and x-space reconstruction methods into a forward model, where the output of the forward model is the PSF-blurred x-space reconstructed image. We then treat the blur as an inverse problem solved by Kaczmarz iteration.Main results. After we have proposed the method optimization, the normal resolution of simulation and device images has been increased from 3.5 mm and 5.25 mm to 1.5 mm and 3.25 mm, which has reached the level in the tangential resolution. Quantitative indicators of image quality such as PSNR and SSIM have also been greatly improved.Significance. Simulation and imaging of real phantoms indicate that our approach provides better isotropic resolution and image quality than the x-space method alone or other methods for removing PSF blur. Using our proposed method to optimize the image quality of x-space reconstructed images using unidirectional Cartesian trajectories, it will promote the clinical application of MPI in the future.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Magnetic Fields , Phantoms, Imaging , Magnetic Iron Oxide Nanoparticles
16.
Sci Total Environ ; 915: 170039, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38219998

ABSTRACT

High mass concentration of organic aerosol (OA) and its fraction in PM2.5 (particle matter with radius <2.5 µm) were observed in the low layer over a rural site of the North China Plain (NCP) in winter 2018. The mass fraction of OA in PM2.5 was 65.5 % at ground level (5 m above ground), and decreased to 37.1 % in layer of 200-1000 m. In addition, there was a sharp decrease of OA at around the top of planetary boundary layer (PBL), which was distinctly different from the vertical distributions of secondary inorganic aerosols (SIA, e.g., nitrate (NO3-), ammonium (NH4+), and sulfate (SO42-)). The altitude with sharp decrease of OA was very low in the morning and evening, e.g., the sharp decrease of OA occurred at a height <50 m at nighttime on Dec. 19, while was elevated in the noon with the PBL development. Furthermore, OA at ground level exhibited a distinct diurnal variation with a night-to-day ratio of 2.3, which was much larger than those of SIA and inactive CO. All the above results indicated the extremely high OA concentration at the rural site was mainly attributed to direct emission from local sources, such as the combustion of coal and biomass for heating. The extremely high OA could be expected in vest rural areas of the NCP in winter because the farmer activities are very similar to the investigated rural site, underscoring the urgency to mitigate OA emission in rural area for improving the local as well as the regional air quality.

17.
J Environ Sci (China) ; 138: 719-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135434

ABSTRACT

Peroxyacetyl nitrate (PAN) is an important photochemical pollutant in the troposphere, whereas long-term measurements are scarce in rural areas in North China Plain (NCP), resulting in unclear seasonal variations and sources of PAN in rural NCP. In this study, we conducted a 1-year observation of PAN during 2021-2022 at the rural NCP site. The average concentrations of PAN were 1.10, 0.75, 0.65, and 0.88 ppbv in spring, summer, autumn, and winter, respectively, with a 1-year average of 0.81 ± 0.60 ppbv. Calculations indicate that the loss of PAN through thermal decomposition in summer accounts for 43.2% of the total formed PAN, which is an important reason for the low concentration of PAN in summer. We speculate that since the correlation between PAN and O3 in winter is significantly lower than that in other seasons, the observed regional transport of PAN cannot be ignored in winter. Through budget analysis, regional transport accounted for 12.8% and 55.9% of the observed PAN on the spring and winter pollution days, respectively, which showed that regional transport played key roles during the photochemical pollution of the rural NCP in winter. The potential source contribution function revealed that the transported PAN mainly comes from southern Hebei in spring. In winter, the transported PAN was mainly from Langfang, Hengshui, and southern Beijing. Our findings may aid in understanding PAN variations in different seasons in rural areas and highlight the impact of regional transport on the PAN budget.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , China , Seasons , Particulate Matter/analysis
19.
Shanghai Kou Qiang Yi Xue ; 32(4): 342-350, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38044725

ABSTRACT

PURPOSE: To prepare PEGS/ß-TCP modified magnesium alloy (PEGS/ß-TCP/MZG) membranes by forming a glycolated poly(sebacate)/ß-tricalcium phosphate (PEGS/ß-TCP) coating on the surface of magnesium-zinc-gadolinium alloy (MZG) membranes, and to evaluate the osteogenic induction activity and immunomodulatory properties of PEGS/ß-TCP/MZG using the material extract medium. METHODS: PEGS/ß-TCP coating was prepared on the surface of MZG by solvent method, and the PEGS/ß-TCP/MZG membrane was fabricated and compared with PEGS/ß-TCP and MZG to examine the morphology, composition, and hydrophilicity. The amount of magnesium ions released and the pH value of the materials were tested after 3 days of immersion. The cell viability and osteogenic differentiation of MC3T3 cells induced by extract medium were investigated by CCK-8 assay, ALP and mineralized nodule staining. The cell viability and polarization of RAW cells induced by extract medium were then investigated. The expression of macrophage-secreted cytokines was examined by PCR analysis. GraphPad Prism 9.0 software package was used for statistical analysis. RESULTS: PEGS/ß-TCP/MZG membranes with PEGS/ß-TCP coating tightly embedded with MZG were successfully fabricated, and the material had good hydrophilicity. The results of degradation experiments indicated that the PEGS/ß-TCP coating effectively slowed down the degradation rate of MZG, leading to a lower pH value and concentration of Mg2+ ion in the extract medium of PEGS/ß-TCP/MZG group. The results of in vitro cell experiments showed that PEGS/ß-TCP/MZG had no significant effect on the proliferation activity of both MC3T3-E1 and macrophages. PEGS/ß-TCP/MZG significantly enhanced the expression of ALP and mineralized nodule staining in MC3T3-E1. Although there was no significant difference in macrophage polarization pattern between PEGS/ß-TCP and PEGS/ß-TCP/MZG groups, PEGS/ß-TCP/MZG further reduced inflammation based on the immunomodulation of PEGS/ß-TCP coating related TNF-α expression and increased osteogenesis related TGF-ß expression. CONCLUSIONS: MZG membrane modified by PEGS/ß-TCP may provide a new material option for the development of bone tissue engineering.


Subject(s)
Magnesium , Osteogenesis , Magnesium/pharmacology , Magnesium/chemistry , Alloys/pharmacology , Alloys/chemistry , Calcium Phosphates/pharmacology , Cell Differentiation , Polyethylene Glycols/pharmacology
20.
Front Genet ; 14: 1281601, 2023.
Article in English | MEDLINE | ID: mdl-38028584

ABSTRACT

Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall regional environments. In this study, three local sheep breeds in the northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep, were analyzed for genetic diversity, population structure, and selective signature using the Illumina OvineSNP50K BeadChip. We found that LOP, BYK, and KUN had lower observed heterozygosity and expected heterozygosity than TEX, SUF, and ADP, which were differentiated based on geographic distribution. We performed fixation index (FST) analysis on three local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and introduced sheep breeds (TEX, SUF, and ADP) to measure genetic differentiation. Nucleotide diversity (PI) analysis was performed on single-nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of 493 candidate genes were obtained by taking the intersection at a threshold of 5%. Among them, SMAD2, ESR2, and HAS2 were related to reproductive traits. PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and DNAJB5 were related to desert environmental adaptation. Analyzing the genetic patterns of local sheep in the northeastern Tarim Basin can protect the germplasm resources of local sheep and promote the development and utilization of sheep genetic resources.

SELECTION OF CITATIONS
SEARCH DETAIL
...