Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(15): 6030-6036, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569068

ABSTRACT

Cysteine (Cys), as one of the biological thiols, is related to many physiological and pathological processes in humans and plants. Therefore, it is necessary to develop a sensitive and selective method for the detection and imaging of Cys in biological organisms. In this work, a novel near-infrared (NIR) fluorescent probe, Probe-Cys, was designed by connecting furancarbonyl, as a new recognition moiety, with Fluorophore-OH via the decomposition of IR-806. The use of the furan moiety is anticipated to produce more effective fluorescence quenching because of the electron-donating ability of the O atom. Probe-Cys has outstanding properties, such as a new recognition group, an emission wavelength in the infrared region at 710 nm, a linear range (0-100 µM), a low detection limit of 0.035 µM, good water solubility, excellent sensitivity, and selectivity without the interference of Hcy, GSH, and HS-. More importantly, Probe-Cys could achieve the detection of endogenous Cys by reacting with the stimulant 1,4-dimercaptothreitol (DTT) and the inhibitor N-ethylmaleimide (NEM) in HepG2 cells and zebrafish. Ultimately, it was successfully applied to obtain images of Arabidopsis thaliana, revealing that the content of Cys in the meristematic zone was higher than that in the elongation zone, which was the first time that the NIR fluorescence probe was used to obtain images of Cys in A. thaliana. The superior properties of the probe exhibit its great potential for use in biosystems to explore the physiological and pathological processes associated with Cys.


Subject(s)
Arabidopsis , Perciformes , Humans , Animals , Fluorescence , Zebrafish , Cysteine , HeLa Cells , Fluorescent Dyes , Glutathione
2.
Biosensors (Basel) ; 14(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667174

ABSTRACT

A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) complex ([(3-pba)2Ir(bpy-COOH)](PF6)) (3-pba = 3-(2-pyridyl) benzaldehyde, bpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid) with an oligopeptide (CGVPLSLTMGKGGK). An ECL biosensor was fabricated by firstly casting Nafion and gold nanoparticles (AuNPs) on a glassy carbon electrode and then self-assembling both of the ECL probes, 6-mercapto-1-hexanol and zwitterionic peptide, on the electrode surface, from which the AuNPs could be used to amplify the ECL signal and Ir-peptide could serve as an ECL probe to detect the MMP-3. Thanks to the MMP-3-induced cleavage of the oligopeptide contributing to the decrease in ECL intensity and the amplification of the ECL signal using AuNPs, the ECL biosensor could selectively and sensitively quantify MMP-3 in the concentration range of 10-150 ng·mL-1 and with both a limit of quantification (26.7 ng·mL-1) and a limit of detection (8.0 ng·mL-1) via one-step recognition. In addition, the developed ECL biosensor showed good performance in the quantization of MMP-3 in serum samples, with a recovery of 92.6% ± 2.8%-105.6% ± 5.0%. An increased level of MMP-3 was found in the serum of rheumatoid arthritis patients compared with that of healthy people. This work provides a sensitive and selective biosensing method for the detection of MMP-3 in human serum, which is promising in the identification of patients with rheumatoid arthritis.


Subject(s)
Biosensing Techniques , Gold , Luminescent Measurements , Matrix Metalloproteinase 3 , Metal Nanoparticles , Oligopeptides , Humans , Matrix Metalloproteinase 3/blood , Gold/chemistry , Metal Nanoparticles/chemistry , Luminescence , Limit of Detection , Electrodes , Electrochemical Techniques
3.
Mikrochim Acta ; 191(3): 143, 2024 02 17.
Article in English | MEDLINE | ID: mdl-38368295

ABSTRACT

An enzyme immunoassay was developed based on the coulometric measurement of immunoglobulin M (IgM) against Hantaan viruses (HTNV) by using virus-like particles (VLPs) as recognition molecules. The surface functionalization of screen-printed carbon electrodes (SPCEs) was achieved through paste-exfoliated graphene that was modified with a COOH group and a thionine mediator through supramolecular-covalent scaffolds, on SPCEs by using the binder contained in the ink. After the covalent immobilization of the antibody, the sensor was used for the sandwich enzyme immunoassay of IgM against HTNV. By using HTNV VLPs as the second recognization molecules, the resulting sensor efficiently monitored the reaction of IgM against HTNV and anti-IgM antibody with high specificity. By attaching HTNV nucleocapsid protein antibody conjugate with horseradish peroxidase (HRP) onto VLPs, the signal response of the assay was derived from the coulometric measurement of H2O2 reduction mediated by thionine on the electrode surface after the application of a potential (- 0.2 V vs. Ag/AgCl). The ratio of charges measured before or after H2O2 addition was used to quantify IgM because these charges could be used as background charges or total charges, respectively. The ratio exhibited good agreement with IgM concentration within a range 0.1 to 1000 pg mL-1, and a detection limit of 0.06 pg mL-1 was obtained. The assay demonstrated high sensitivity and specificity toward HTNV-specific IgM in serum.


Subject(s)
Biosensing Techniques , Graphite , Phenothiazines , Graphite/chemistry , Carbon/chemistry , Immunoassay/methods , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Immunoglobulin M , Electrodes
4.
Chem Commun (Camb) ; 60(15): 2082-2085, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38293842

ABSTRACT

A new fluorescence probe OHPD that could specifically identify acetylcholinesterase/butyrylcholinesterase has been developed and successfully applied to imaging in vivo. Probe OHPD shows significant color change, high selectivity, high sensitivity, and low detection limit for the detection of cholinesterase. Moreover, the real-time imaging in situ indicated that endogenous cholinesterase was mainly present in the yolk sac of zebrafish.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Animals , Fluorescent Dyes , Zebrafish , Cholinesterase Inhibitors/pharmacology
5.
Anal Chem ; 96(1): 446-454, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38124437

ABSTRACT

Histidine (His) and its metabolite analysis is significant due to their vital roles in the diagnosis of diseases. In practical applications, simple and effective detection and discrimination of these metabolic species are still a great challenge due to their highly similar structures. Herein, photoluminescence (PL)-electrochemiluminescence (ECL) dual-mode sensor arrays consisting of a series of sensing elements were proposed for simultaneous quantitation and accurate discrimination of His and its four key metabolites (including histamine, imidazole-4-acetic acid, N-acetylhistamine, and imidazole propionate). The sensing elements of these sensor arrays were constructed by employing two solvent iridium(III) complexes ([Ir(pbz)2(DMSO)Cl] and [Ir(ppy)2(DMSO)Cl], pbz = 3-(2-pyridyl)benzoic acid, ppy = 2-phenylpyridine) with excellent PL and ECL performances as cross-responsive sensing units. Based on diverse coordination abilities of the two complexes with the imidazole group of the five targets, PL and ECL responses of each sensing unit can be enhanced to various degrees, which generate unique fingerprint patterns for the corresponding targets. Through principal component analysis, the multifarious patterns (two-, three-, and four-element sensor arrays) can be transformed into simple visualization modes, from which His and its four key metabolites can be effectively discriminated against each other. Moreover, the quantitation of an individual metabolic species at different concentrations and the recognition of the mixtures with different ratios were also accurately achieved. Notably, His and its four key metabolites in urine can also be successfully discriminated by the as-fabricated sensor arrays, and the patients with kidney diseases can be identified clearly, providing a promising way for disease diagnosis.


Subject(s)
Dimethyl Sulfoxide , Histidine , Humans , Photometry , Luminescent Measurements
6.
Front Bioeng Biotechnol ; 11: 1326395, 2023.
Article in English | MEDLINE | ID: mdl-38125306

ABSTRACT

Numerous microorganisms, including bacteria and fungus, have been identified as capable of degrading rubber. Rubber biodegradation is still understudied due to its high stability and the lack of well-defined pathways and efficient enzymes involved in microorganism metabolism. However, rubber products manufacture and usage cause substantial environmental issues, and present physical-chemical methods involve dangerous chemical solvents, massive energy, and trash with health hazards. Eco-friendly solutions are required in this context, and biotechnological rubber treatment offers considerable promise. The structural and functional enzymes involved in poly (cis-1,4-isoprene) rubber and their cleavage mechanisms have been extensively studied. Similarly, novel bacterial strains capable of degrading polymers have been investigated. In contrast, relatively few studies have been conducted to establish natural rubber (NR) degrading bacterial consortia based on metagenomics, considering process optimization, cost effective approaches and larger scale experiments seeking practical and realistic applications. In light of the obstacles encountered during the constructing NR-degrading consortia, this study proposes the utilization of multi-omics tools to discern the underlying mechanisms and metabolites of rubber degradation, as well as associated enzymes and effective synthesized microbial consortia. In addition, the utilization of omics tool-based methods is suggested as a primary research direction for the development of synthesized microbial consortia in the future.

7.
Analyst ; 148(24): 6253-6260, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37937443

ABSTRACT

A novel point-of-care testing (POCT) method for the determination of proteases was developed for the first time using a designed disposable capillary-fill device based on the cleavage of electrogenerated chemiluminescence (ECL)-label-tagged peptide probes and enabling elimination of the light-shielding from the magnetic beads (MBs). As a proof-of-principle, prostate-specific antigen (PSA) was taken as a model analyte, and streptavidin-coated magnetic beads bound with ruthenium-complex-tagged specific peptide (biotin-HSSKLQK) were utilized as MB ECL probes. The capillary-fill device was designed to be divided into a reaction zone and detection zone. In the reaction zone, the bio-cleavage reaction between the PSA analyte with the peptide on the surface of the MB ECL probes occurred, while in the detection zone, ECL emission was produced by a screen-printed carbon electrode, Ag/AgCl reference electrode and carbon counter electrode. When the analyte PSA was introduced into the suspension of MB ECL probes in the reaction zone of the device, biocleavage of the peptide occurred, and the cleaved Ru1 part was released from the surface of the MB ECL probes. The capillary-filled device was tilted 90°, and with the aid of gravity, the solution containing the released Ru1 part flowed to the surface of the working electrode in the detection region of the device, while the MB ECL probes were fixed in the reaction zone by an external magnet. PSA can be determined by the ECL emission from the released Ru1 part in the presence of the co-reactant tri-n-propylamine at the detection zone. Under the optimal conditions, the developed ECL method showed a low detection limit of 0.12 ng mL-1 for PSA. This work demonstrates that the developed ECL biosensing approach can eliminate the MB light-shielding effect and quantify proteases with high sensitivity and selectivity, which could be easily extended to POCT-based ECL biosensing for other proteases.


Subject(s)
Biosensing Techniques , Peptide Hydrolases , Humans , Male , Prostate-Specific Antigen , Luminescence , Peptides , Carbon , Luminescent Measurements/methods , Biosensing Techniques/methods
8.
Mikrochim Acta ; 190(10): 422, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775573

ABSTRACT

An electrochemiluminescence (ECL) bioassay with high sensitivity and anti-fouling ability was developed for determination of matrix metalloproteinase 9 (MMP-9) secreted from living cells under external stimulation. A peptide with sequence of CLGRMGLPGK and a new cyclometalated iridium(III) complex bearing carboxyl group, (pq)2Ir(dcbpy) (pq = 2-phenylquinoline, dcbpy = 2,2'-bipyridyl-4,4'-dicarboxyli acid, abbreviated as Ir) were employed as molecular recognition substrate and ECL emitter, respectively. The peptide was labelled with the Ir to form Ir-peptide as ECL probe. Ir-peptide was self-assembled onto Nafion and gold nanoparticles (AuNPs) modified glassy carbon electrode (AuNPs/Nafion/GCE) and then both of 6-mercapto-1-hexanol (MCH) and zwitterionic peptide as blocking reagents were co-assembled on Ir-peptide/AuNPs/Nafion/GCE to form an anti-fouling ECL peptide-based biosensor. MMP-9 can be quantified in the range 1.0-50 ng·mL-1 with a detection limit of 0.50 ng·mL-1 based on the decreased ECL intensity. Relative standard derivation was 2.3% for six fabricated anti-fouling ECL peptide-based biosensors after reaction with 50 ng·mL-1 MMP-9. The anti-fouling ECL peptide-based biosensor can be used to monitor MMP-9 secreted from living cells under external stimulation. 96.0%-108.0% of recoveries were obtained in 60-diluted cell culture media. This study demonstrates that the ECL biosensor by the combination of iridium(III) complex-based sensitive ECL method and the anti-fouling interface provides a promising way for the determination of MMP-9 in biological sample, which is viable in clinical diagnosis and point-of-care test of protease.


Subject(s)
Biofouling , Metal Nanoparticles , Gold/chemistry , Matrix Metalloproteinase 9 , Iridium , Biofouling/prevention & control , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Peptides/chemistry
9.
ACS Sens ; 8(7): 2771-2779, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37421370

ABSTRACT

We propose a novel washing-free electrochemiluminescence (ECL) biosensor for the simultaneous detection of two types of N6 methyladenosines-RNAs (m6A-RNAs), which are potential cancer biomarkers, on the basis of binding-induced DNA strand displacement (BINSD). The biosensor integrated a tri-double resolution strategy that combined spatial and potential resolution, hybridization and antibody recognition, and ECL luminescence and quenching. The biosensor was fabricated by separately immobilizing two ECL reagents (gold nanoparticles/g-C3N4 nanosheets and ruthenium bipyridine derivative/gold nanoparticles/Nafion) and the capture DNA probe on the two sections of glassy carbon electrode. As a proof of concept, m6A-Let-7a-5p and m6A-miR-17-5p were chosen as model analytes, while m6A antibody-DNA3/ferrocene-DNA4/ferrocene-DNA5 was designed as an m6A-binding probe and DNA6/DNA7 was designed as a hybridization probe with DNA3 to release the quenching probes ferrocene-DNA4/ferrocene-DNA5. The recognition process led to the quenching of the ECL signals from both probes via BINSD. The proposed biosensor has the advantage of being washing-free. The ECL methods using the fabricated ECL biosensor with the designed probes exhibited a low detection limit of 0.03 pM for two m6A-RNAs and high selectivity. This work reveals that this strategy is promising for developing an ECL method for the simultaneous detection of two m6A-RNAs. The proposed strategy could be expanded to develop the analytical methods for the simultaneous detection of other RNA modifications by changing the antibody and hybridization probe sequences.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metallocenes , Gold , Luminescent Measurements/methods , Biosensing Techniques/methods , DNA/genetics , Antibodies
10.
Chem Commun (Camb) ; 59(58): 8941-8944, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37394953

ABSTRACT

A sensitive and noninvasive cyclic peptide-based electrogenerated chemiluminescence biosensing method for the determination of sweat glucose was developed. Glucose can be quantified in sweat samples with a recovery of 93%-113% via one-step recognition, which is promising for the determination of sweat glucose.


Subject(s)
Biosensing Techniques , Peptides, Cyclic , Sweat , Glucose , Luminescence , Biosensing Techniques/methods , Luminescent Measurements/methods
11.
Antonie Van Leeuwenhoek ; 116(8): 817-828, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37237242

ABSTRACT

A polyphasic taxonomic study was conducted on two Gram-negative, non-sporulating, non-motile bacterial strains, S2-20-2T and S2-21-1, isolated from a contaminated freshwater sediment in China. Comparative 16S rRNA gene sequence studies revealed a clear affiliation of two strains with Bacteroidetes, which showed the highest pairwise sequence similarities with Hymenobacter duratus BT646T (99.3%), Hymenobacter psychrotolerans Tibet-IIU11T (99.3%), Hymenobacter kanuolensis T-3T (97.6%), Hymenobacter swuensis DY53T (96.9%), Hymenobacter tenuis POB6T (96.8%), Hymenobacter seoulensis 16F7GT (96.7%), and Hymenobacter rigui KCTC 12533T (96.5%). The phylogenetic analysis based on 16S rRNA gene sequences showed that two strains formed a clear phylogenetic lineage with the genus Hymenobacter. Major fatty acids were identified as iso-C15:0, anteiso-C15:0, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c/t) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). Major cellular polar lipids were identified as phosphatidylethanolamine, three unidentified aminolipids, an unidentified aminophosopholipid and an unidentified lipid. The respiratory quinone was detected as MK-7 and the genomic DNA G + C content was determined to be 57.9% (genome) for type strain S2-20-2T and 57.7 mol% (HPLC) for strain S2-21-1. The observed ANI and dDDH values between strain S2-20-2T and its closely related strains were 75.7-91.4% and 21.2-43.9%, respectively. Based on physiological, biochemical, genetic and genomic characteristics, we propose that strains S2-20-2T and S2-21-1 represent a novel species of the genus Hymenobacter, for which the name Hymenobacter sediminicola sp. nov. is proposed. The type strain is S2-20-2T (= CGMCC 1.18734T = JCM 35801T).


Subject(s)
Cytophagaceae , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fatty Acids/analysis , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Bacterial Typing Techniques , Vitamin K 2/chemistry
12.
Front Microbiol ; 14: 1181967, 2023.
Article in English | MEDLINE | ID: mdl-37138608

ABSTRACT

Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment.

13.
Langmuir ; 39(19): 6681-6690, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37140168

ABSTRACT

The understanding of the dissolution processes of solids is important for the design and synthesis of solids in a controlled and precise manner and for predicting their fate in the aquatic environment. We report herein single-particle-based confocal laser scanning microscopy (CLSM) for tracking the dissolution surface kinetics of a single fluorescent cyclodextrin metal-organic framework (CD-MOF). As a proof of concept, CD-MOF containing fluorescein, named as CD-MOF⊃FL, was synthesized by encapsulating fluorescein into the interior of CD-MOF via a vapor diffusion method and used as a single-particle dissolution model because of its high FL efficiency and unique structure. The morphology of CD-MOF⊃FL and the distribution of fluorescein within CD-MOF⊃FL were characterized. The growth and dissolution processes of CD-MOF⊃FL at the single-particle level were visualized and quantified for the first time by recording the change of the fluorescence emission. Three processes, including nucleation, germination growth, and saturation stage, were found in the growth of CD-MOF⊃FL, and the growth kinetics followed Avrami's model. The dissolution rate at the face of a single CD-MOF⊃FL crystal was slower than that of its arris, and the dissolution rate of the CD-MOF⊃FL crystal was increased with the increase of the water amount in methanol solution. The dissolution process of the CD-MOF⊃FL crystal was a competitive process of erosion and diffusion in different methanol aqueous solutions, and the dissolution kinetics followed the Korsmeyer-Peppas model. These results offer new insights into the nature of dissolution kinetics of CD-MOF⊃FL and provide new venues for the quantitative analysis of solid dissolution and growth at the single-particle level.

14.
Talanta ; 259: 124485, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019008

ABSTRACT

This work reports the performance enhancement strategies on magnetic beads (MBs)-based electrochemiluminescence (ECL) platforms by using double magnetic field actuation of the ECL magnetic microbiosensors (MMbiosensors) for highly sensitive determination of cancer biomarker and exosomes. To obtain the high sensitivity and reproducibility of the ECL MMbiosensors, a series of strategies have been developed including replacing a conventional photomultiplier tube (PMT) with a diamagnetic PMT, replacing the stacked ring-disc magnets with circular-disc magnets lain-in glassy carbon electrode, adding a pre-concentration process of MBs using external magnet actuation. For fundamental research, the ECL MBs taken as the substitute of ECL MMbiosensors were prepared by binding biotinylated DNA tagged with Ru(bpy)32+ derivative (Ru1) to streptavidin-coated MB(MB@SA) were which showed that the developed strategies can enhance 45-fold sensitivity. Importantly, the developed MBs-based ECL platform was estimated by determination of prostate specific antigen (PSA) and exosomes. For PSA, MB@SA•biotin-Ab1(PSA) was taken as the capture probe and Ru1-labeled Ab2 (PSA) was done as ECL probe, while for exosomes, MB@SA•biotin-aptamer (CD63) was taken as the capture probe and Ru1-labeled Ab (CD9) was done as the ECL probe. The experiment results showed that the developed strategies can enhance 33-fold sensitivity of ECL MMbiosensors for PSA and exosomes. The detection limit is 0.28 ng mL-1 for PSA and 4.9 × 102 particle mL-1 for exosomes. This work demonstrated that a series of proposed magnetic field actuation strategies greatly increase the sensitivity of the ECL MMbiosensors. The developed strategies can be expanded to MBs-based ECL and electrochemical biosensors for clinical analysis with greater sensitivity.


Subject(s)
Biosensing Techniques , Exosomes , Neoplasms , Male , Humans , Biomarkers, Tumor , Prostate-Specific Antigen , Reproducibility of Results , Biosensing Techniques/methods , Luminescent Measurements/methods , Magnetic Phenomena , Magnetic Fields , Neoplasms/diagnosis
15.
Anal Sci ; 39(8): 1349-1359, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093556

ABSTRACT

This work presents the role of commercial microfiltration membranes combined with single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) in removing environmental matrix interference for model silver nanoparticles (AgNPs) determination. The filters with different pore sizes (0.22 µm, 0.45 µm, 0.8 µm) and materials (mixed cellulose ester, polyether sulfone, and nylon) were investigated to acquire the recovery of particle concentration and size of AgNPs spiked into different real aqueous solutions, including ultrapure water, tap water, surface water, and sewage effluent. The maximum recovery of nanoparticle concentration was 70.2% through the 0.8 µm polyether sulfone membrane. The heated filters were able to improve the recovery of AgNPs particle concentration in the real aqueous environment. Hence, the pretreatment method by SP-ICP-MS combined with filtration membrane was simple, fast, and low-cost to quantify AgNPs in natural water environments.

16.
Anal Chem ; 95(13): 5500-5506, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36967489

ABSTRACT

A label-free electrogenerated chemiluminescence (ECL) aptasensing method for highly sensitive determination of dopamine (DA) was developed based on target-induced DNA conformational change. After anti-DA specific aptamer, as molecular recognition element, was hybridized with a capture ss-DNA (complementary with the aptamer), the formed double-strand DNA (ds-DNA) was self-assembled onto the surface of a gold electrode, and then Ru(phen)32+, as ECL reagent, was intercalated into ds-DNA to form an ECL biosensing platform. In the presence of DA, DA bound with its aptamer and target-induced DNA conformational change occurred, resulting in the dissociation of ds-DNA, the release of intercalated Ru(phen)32+ from the electrode surface, and the decrease of ECL intensity. For comparison, an ECL aptamer-based biosensing method using an ECL reagent-labeled aptamer was also developed for DA assay based on target-induced DNA conformational change. Because of the increase in the amount of ECL reagent into ds-DNA over that of the single-site ECL reagent-labeled aptamer, an obvious increase of ECL intensity was found at the ds-DNA modified electrode over the aptamer modified electrode. DA can be sensitively detected with a lower detection limit of 0.05 nM in the range from 0.1 to 100 nM. With the recognition of the aptamer for DA, DA can be selectively and sensitively detected in artificial cerebrospinal fluid and serum samples without interference from common small molecules. This work demonstrates that the combination of the direct transduction of specific recognition of DA and its aptamer into an ECL signal with Ru(phen)32+ intercalated ds-DNA amplification provides a promising strategy for the development of a simple, sensitive, and selective method for DA assay, which is of great importance in neurochemical assays and clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dopamine , Luminescence , Luminescent Measurements/methods , DNA/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods
17.
Anal Chim Acta ; 1253: 340926, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36965986

ABSTRACT

This work reports washing-free electrogenerated chemiluminescence (ECL) magnetic microbiosensors based on target assistant proximity hybridization (TAPH) for multiple protein biomarkers for the first time. As a principle-of-proof, alpha-fetoprotein (AFP) was chosen as a model analyte, and biotin-DNA1 bound streptavidin-coated magnetic microbeads (MMB@SA⋅biotin-DNA1) were designed as the universal capture MMB, while the corresponding two antibodies tagged with DNA2 or DNA3 were utilized as hybrid recognition probes, and ruthenium complex-tagged DNA4-10A was designed as a universal ECL signal probe. When the capture MMB was added into the mixture solution (containing the analyte, hybrid recognition probes, signal probe and tri-n-propylamine), biocomplexes were formed on the MMB. After the resulting MMB was efficiently brought to the surface of a magnetic glassy carbon electrode (MGCE), ECL measurement was performed without a washing step, resulting in an increase in the ECL intensity. A model for ECL measuring the second-order rate constants of hybridization reactions on MMB was derived. It was found that the rate constants for hybridization reactions on MMB in rotating mode are 1.6-fold higher than those in shaking mode, and a suitable DNA length of the signal probe can improve the signal-to-noise ratio. The washing-free ECL method was developed for the determination of AFP with a much lower detection limit (LOD) of 0.04 ng mL-1. The developed flexible strategy has been extended to determine D-dimer with an LOD of 0.1 ng mL-1 and myoglobinglobin with an LOD of 1.1 ng mL-1. This work demonstrated that the proposed strategy of ECL TAPH on MMB at MGCE is a washing-free and flexible promising strategy, and can be extended to qualify other multiple protein biomarkers in real clinical assays.


Subject(s)
Biosensing Techniques , alpha-Fetoproteins , Luminescence , Nucleic Acid Hybridization , Biomarkers , Luminescent Measurements/methods , Biosensing Techniques/methods
18.
Chem Commun (Camb) ; 59(24): 3507-3522, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36820650

ABSTRACT

This Feature Article simply introduces principles and mechanisms of electrochemiluminescence (ECL) biosensors for the determination of biomarkers and highlights recent advances of ECL biosensors on key aspects including new ECL reagents and materials, new biological recognition elements, and emerging construction biointerfacial strategies with illustrative examples and a critical eye on pitfalls and discusses challenges and perspectives of ECL biosensors for health analysis.


Subject(s)
Biosensing Techniques , Luminescent Measurements , Electrochemical Techniques
19.
ACS Appl Mater Interfaces ; 15(5): 7578-7591, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36716404

ABSTRACT

The effective integration of multiple functions into electromagnetic wave-absorbing (EWA) materials is the future development direction but remains a huge challenge. A rational selection of components and the design of structures can make the material have excellent EWA performance and heat dissipation. Herein, the core-shell structured boron nitride@nitrogen-doped carbon (BN@NC) is prepared by using waterborne polyurethane (WPU) as the carbon source via a facile pyrolysis treatment process, where NC is used as the conductive loss shell, and BN serves as an impedance matching core and dominant heat transfer media. As a result, the BN@NC-900 filled with paraffin wax yields a minimum reflection loss of -42.2 dB at 2.2 mm and an effective absorbing bandwidth of 4.48 GHz at 1.8 mm, and its thermal conductivity reaches up to 0.92 W/m·K in epoxy resin. Most importantly, flexible BN@NC/WPU films are prepared and simultaneously achieve the dual-functional capability of efficiently dissipating heat and electromagnetic waves (-50.0 dB). Besides, an attractive multiband absorption feature (>99%) from C to Ku bands is realized and a strong absorbing over -27.0 dB at the S band (2.88 GHz) is even achieved. This study may pave a new route for the rational design of multifunctional EWA materials.

20.
Anal Chem ; 94(49): 17328-17333, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36453832

ABSTRACT

Aldehyde dehydrogenase (ALDH) is a vital enzyme that converts aldehyde to acetic acid during alcohol metabolism. ALDH is also a cellular marker of cancer stem cells (CSCs), which plays an important role in cancer diagnosis and prognosis assessment. Therefore, there is a need to explore convenient, selective, and sensitive methods for the detection and imaging of ALDH. Because of the low background fluorescence and high penetration, near-infrared (NIR) fluorescent probes are powerful tools for the detection of ALDH. Until now, only one NIR fluorescent probe has been reported for detecting ALDH. Hence, we synthesized a novel NIR fluorescent probe, Probe-ALDH, by linking the new specific recognition moiety 4-hydroxymethyl benzaldehyde with NIR fluorophore AXPI. Compared with the existing ALDH fluorescent probes, Probe-ALDH has excellent properties, such as a new specific recognition moiety without the substitution of benzaldehyde, a simple synthesis method, emission wavelength in the NIR region, reaction time of only 30 min, and a detection limit as low as 0.03 U·mL-1, which is better than those of the previously reported probes. The probe effectively eliminates the interference from reactive oxygen species (ROS), amino acids, and amines. More importantly, the flow cytometry results showed that Probe-ALDH has great potential applications in the identification and isolation of CSCs. Ultimately, it was successfully applied to the imaging analysis of endogenous ALDH in HepG2 cells by the addition of inhibitor disulfiram. The excellent performance of Probe-ALDH makes it a promising candidate for drug discovery, cancer diagnosis, and so forth.


Subject(s)
Aldehyde Dehydrogenase , Neoplasms , Humans , Aldehyde Dehydrogenase/metabolism , Fluorescent Dyes/chemistry , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Disulfiram/metabolism , Disulfiram/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...