Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inorganica Chim Acta ; 389: 138-150, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-23420124

ABSTRACT

Copper-dioxygen interactions are of intrinsic importance in a wide range of biological and industrial processes. Here, we present detailed kinetic/thermodynamic studies on the O(2)-binding and arene hydroxylation reactions of a series of xylyl-bridged binuclear copper(I) complexes, where the effects of ligand electronic and structural elements on these reactions are investigated. Ligand 4-pyridyl substituents influence the reversible formation of side-on bound µ-η(2):η(2)-peroxodicopper(II) complexes, with stronger donors leading to more rapid formation and greater thermodynamic stability of product complexes [Cu(II) (2)((R)XYL)(O(2) (2-))](2+). An interaction of the latter with the xylyl π-system is indicated. Subsequent peroxo electrophilic attack on the arene leads to C-H activation and oxygenation with hydroxylated products [Cu(II) (2)((R)XYLO(2-))((-)OH)](2+) being formed. A related unsymmetrical binucleating ligand was also employed. Its corresponding O(2)-adduct [Cu(II) (2)(UN)(O(2) (2-))](2+) is more stable, but primarily because the subsequent decay by hydroxylation is in a relative sense slower. The study emphasizes how ligand electronic effects can and do influence and tune copper(I)-dioxygen complex formation and subsequent reactivity.

2.
J Am Chem Soc ; 127(15): 5469-83, 2005 Apr 20.
Article in English | MEDLINE | ID: mdl-15826184

ABSTRACT

A series of copper-dioxygen adducts [{Cu(II)(MePY2)(R)}(2)(O(2))](B(C(6)F(5))(4))(2) (1(R)()), systematically varying in their electronic properties via ligand pyridyl donor substituents (R = H, MeO, and Me(2)N), oxidize a variety of substrates with varying C-H or O-H bond dissociation enthalpies. Detailed mechanistic studies have been carried out, including investigation of 1(R)() thermodynamic redox properties, 1(R)() tetrahydrofuran (THF) and N,N'-dimethylaniline (DMA) oxidation kinetics (including analyses of substrate dicopper binding equilibria), and application of mechanistic probes (N-cyclopropyl-N-methylaniline (CMA) and (p-methoxyphenyl)-2,2-dimethylpropanol (MDP)), which can distinguish if proton-coupled electron-transfer (PCET) processes proceed through concerted electron-transfer proton-transfer (ETPT) or consecutive electron-transfer proton-transfer (ET/PT) pathways. The results are consistent with those of previous complementary studies; at low thermodynamic driving force for substrate oxidation, an ET/PT is operable, but once ET (i.e., substrate one-electron oxidation) becomes prohibitively uphill, the ETPT pathway occurs. Possible differences in coordination structures about 1(Me)()()2(N)()/1(MeO)() compared to those of 1(H)() are also used to rationalize some of the observations.


Subject(s)
Copper/chemistry , Oxygen/chemistry , Aniline Compounds/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Furans/chemistry , Models, Molecular , Organometallic Compounds/chemistry , Oxidation-Reduction , Pyridines/chemistry , Thermodynamics
3.
Inorg Chem ; 43(14): 4115-7, 2004 Jul 12.
Article in English | MEDLINE | ID: mdl-15236520

ABSTRACT

A new tridentate ligand, PYAN, is employed to investigate solvent influences for dioxygen reactivity with [Cu(PYAN)(MeCN)]B(C(6)F(5))(4) (1). Stopped-flow kinetic studies confirm that the adducts [[u(II)(PYAN)]2)(O(2))][B(C(6)F(5))(4)](2) (2(Peroxo)) and [[u(III)(PYAN)]2)(O)(2)][B(C(6)F(5))(4)](2) (2(Oxo)) are in rapid equilibrium. Thermodynamic parameters for the equilibrium between 2(Peroxo) and 2(Oxo) re as follows: THF, deltaH degrees approximately -15.7 kJ/mol, deltaS degrees approximately -83 J/K.mol; acetone, deltaH degrees approximately -15.8 kJ/mol, deltaS degrees approximately -76 J/K.mol. UV-visible absorption and resonance Raman spectroscopic signatures demonstrate that the equilibrium is highly solvent dependent; the mixture is mostly 2(Peroxo) in CH(2)Cl(2), but there are significantly increasing quantities of 2(Oxo) along the series methylene chloride --> diethyl ether --> acetone --> tetrahydrofuran (THF). Copper(II)-N(eq) stretches (239, 243, 244, and 246 cm(-)(1) in CH(2)Cl(2), Et(2)O, acetone, and THF, respectively) are identified for 2(Peroxo), but they are not seen in 2(Oxo), revealing for the first time direct evidence for solvent coordination in the more open 2(Peroxo) structure.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Crystallography, X-Ray , Molecular Structure , Solvents , Spectrum Analysis, Raman/methods
4.
J Am Chem Soc ; 126(21): 6536-7, 2004 Jun 02.
Article in English | MEDLINE | ID: mdl-15161265

ABSTRACT

Interactions between cellular proteins and cisplatin-modified DNA are important in determining the anticancer activity of the drug. To develop a general approach for identifying proteins that mediate cellular responses to cisplatin, photoreactive cisplatin analogues having a tethered benzophenone moiety were prepared and used to form the major 1,2-intrastrand platinum-DNA cross-links. Upon irradiation of the platinated DNA dissolved in a HeLa nuclear extract, the appended photolabile benzophenone group generates a highly reactive species that binds irreversibly to cellular proteins that interact with the probe. Several DNA-protein cross-linked adducts were identified that may function in the cellular processing of cisplatin-DNA adducts. Of these, PARP-1 had not previously been demonstrated directly to contact Pt-DNA cross-links in human cells.


Subject(s)
Cisplatin/analogs & derivatives , Cisplatin/metabolism , DNA Adducts/metabolism , DNA/metabolism , HMGB1 Protein/metabolism , HMGB2 Protein/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Base Sequence , Benzophenones/chemistry , Cross-Linking Reagents/chemistry , DNA/drug effects , HMGB1 Protein/chemistry , HMGB2 Protein/chemistry , HeLa Cells , Humans , Oligonucleotides/chemistry , Photoaffinity Labels , Photochemistry , Photosensitizing Agents/chemistry , Poly(ADP-ribose) Polymerases/chemistry
5.
J Am Chem Soc ; 125(42): 12670-1, 2003 Oct 22.
Article in English | MEDLINE | ID: mdl-14558790

ABSTRACT

Copper-dioxygen adducts are important biological oxidants. To gain a better understanding of the underlying chemistries of such species, we report on a series of Cu2II-O2 complexes, [{CuII(MePY2)R'}2(O2)](B(C6F5)4)2 (1R') (where (MePY2)R' is a 4-pyridyl substituted bis[2-(2-(4-R'-pyridyl)ethyl]methylamine; R' = H, MeO, Me2N; Zhang, C. X.; et al. J. Am. Chem. Soc. 2003, 125, 634-635), which readily oxidize exogenous substrates. In this study, we explore the mechanism by which 1R' facilitates the oxidative N-dealkylation of para-substituted N,N-dimethylanilines (R-DMA; R = MeO, Me, H, CN). In the case of 1H, the linear free-energy correlation plot (rho = -2.1) and intramolecular deuterium kinetic isotope effect (KIEintra, using p-R-(C6H4)-N(CH3)(CD3)) profile suggest that R-DMA oxidation occurs through rate-limiting electron transfer (ET). This mechanism was further enforced by comparison of KIEintra versus the intermolecular KIE (KIEinter, using p-R-(C6H4)-N(CH3)2 versus p-R-(C6H4)-N(CD3)2). It was found that KIEinter < KIEintra, suggesting an ET process. In the case of both 1MeO and 1Me2N, the KIEintra profile and linear free-energy correlation plots (rho = -0.49 and -0.99 for 1Me2N and 1MeO with especially poor fitting for the latter) are inconclusive in distinguishing between a rate-limiting ET or hydrogen atom transfer (HAT) pathway. Comparisons of KIEinter versus KIEintra demonstrate a switch in mechanism from ET to HAT for 1Me2N and 1MeO oxidation of R-DMA as R-DMA is made less reducing. In the case of 1Me2N, MeO-DMA and Me-DMA are oxidized via a rate-limiting ET (KIEinter < KIEintra), while H-DMA and CN-DMA are oxidized through a HAT pathway (KIEinter approximately KIEintra). For 1MeO, oxidation occurs through an ET pathway for MeO-, Me-, and H-DMA (KIEinter < KIEintra), while CN-DMA is oxidized though a HAT process (KIEinter approximately KIEintra). Copper complex attributes, which may contribute to the mechanistic observations, are suggested.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/chemical synthesis , Copper/chemistry , Oxygen/chemistry , Alkylation , Electrons , Hydrogen/chemistry , Kinetics , Oxidation-Reduction
6.
Curr Opin Chem Biol ; 7(4): 481-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12941423

ABSTRACT

The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.


Subject(s)
Antineoplastic Agents/therapeutic use , Organometallic Compounds/therapeutic use , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cardiovascular Diseases/drug therapy , Cisplatin/analogs & derivatives , Drug Design , Drug Resistance , Gold/chemistry , Gold/pharmacology , Humans , Inflammation/drug therapy , Molecular Structure , Nervous System Diseases/drug therapy , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
7.
J Am Chem Soc ; 125(17): 5186-92, 2003 Apr 30.
Article in English | MEDLINE | ID: mdl-12708870

ABSTRACT

The effect of endogenous donor strength on Cu(2)O(2) bonds was studied by electronically perturbing [[(R-TMPA)Cu(II)]](2)(O(2))](2+) and [[(R-MePY2)Cu](2)(O(2))](2+) (R = H, MeO, Me(2)N), which form the end-on mu-1,2 bound peroxide and an equilibrium mixture of side-on peroxo-dicopper(II) and bis-mu-oxo-dicopper(III) isomers, respectively. For [[(R-TMPA)Cu(II)](2)(O(2))](2+), nu(O-O) shifts from 827 to 822 to 812 cm(-1) and nu(Cu)(-)(O(sym)) shifts from 561 to 557 to 551 cm(-1), respectively, as R- varies from H to MeO to Me(2)N. Thus, increasing the N-donor strength to the copper decreases peroxide pi(sigma) donation to the copper, weakening the Cu-O and O-O bonds. A decrease in nu(Cu-O) of the bis-mu-oxo-dicopper(III) complex was also observed with increasing N-donor strength for the R-MePY2 ligand system. However, no change was observed for nu(O-O) of the side-on peroxo. This is attributed to a reduced charge donation from the peroxide pi(sigma) orbital with increased N-donor strength, which increases the negative charge on the peroxide and adversely affects the back-bonding from the Cu to the peroxide sigma orbital. However, an increase in the bis-mu-oxo-dicopper(III) isomer relative to side-on peroxo-dicopper(II) species is observed for R-MePY2 with R = H < MeO < Me(2)N. This effect is attributed to the thermodynamic stabilization of the bis-mu-oxo-dicopper(III) isomer relative to the side-on peroxo-dicopper(II) isomer by strong donor ligands. Thus, the side-on peroxo-dicopper(II)/bis-mu-oxo-dicopper(III) equilibrium can be controlled by electronic as well as steric effects.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Amines/chemistry , Ligands , Pyridines/chemistry , Spectrum Analysis, Raman/methods
8.
Inorg Chem ; 42(6): 1807-24, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12639113

ABSTRACT

The kinetic and thermodynamic behavior of O(2)-binding to Cu(I) complexes can provide fundamental understanding of copper(I)/dioxygen chemistry, which is of interest in chemical and biological systems. Here we report stopped-flow kinetic investigations of the oxygenation reactions of a series of tetradentate copper(I) complexes [(L(R))Cu(I)(MeCN)](+) (1(R), R=H, Me, tBu, MeO, Me(2)N) in propionitrile (EtCN), tetrahydrofuran (THF), and acetone. The syntheses of 4-pyridyl substituted tris(2-pyridylmethyl)amine ligands (L(R)) and copper(I) complexes are detailed. Variations of ligand electronic properties are manifested in the electrochemistry of 1(R) and nu(CO) of [(L(R))Cu(I)-CO](+) complexes. The kinetic studies in EtCN and THF show that the O(2)-reactions of 1(R) follow the reaction mechanism established for oxygenation of 1(H) in EtCN (J. Am. Chem. Soc. 1993, 115, 9506), involving reversible formation (k(1)/k(-1)) of [(L(R))Cu(II)(O(2-))](+) (2(R)), which further reacts (k(2)/k(-2)) with 1(R) to form the 2:1 Cu(2)O(2) complex [[(L(R))Cu(II)](2)(O(2)(2-))](2+) (3(R)). In EtCN, the rate constants for formation of 2(R) (k(1)) are not dramatically affected by the ligand electronic variations. For R = Me and tBu, the kinetic and thermodynamic parameters are very similar to those of the parent complex (1(H)); e.g., k(1) is in the range 1.2 x 10(4) to 3.1 x 10(4) M(-1) s(-1) at 183 K. With the stronger donors R = MeO and Me(2)N, more significant effects were observed, with the expected increase in thermodynamic stability of resultant 2(R) and 3(R) complexes, and decreased dissociation rates. The modest ligand electronic effects manifested in EtCN are due to the competitive binding of solvent and dioxygen to the copper centers. In THF, a weakly coordinating solvent, the formation rate for 2(H) is much faster (>/=100 times) than that in EtCN, and the thermodynamic stabilities of both the 1:1 (K(1)) and 2:1 (beta = K(1)K(2)) copper-dioxygen species are much higher than those in EtCN (e.g., for 2(H), deltaH(o) (K(1))=-41 kJ mol(-1) in THF versus -29.8 kJ mol(-1) in EtCN; for 3(H), deltaH(o) (beta)=-94 kJ mol(-1) in THF versus -77 kJ mol(-1) in EtCN). In addition, a more significant ligand electronic effect is seen for the oxygenation reactions of 1(MeO) in THF compared to that in EtCN; the thermal stability of superoxo- and peroxocopper complexes are considerably enhanced using L(MeO) compared to L(H). In acetone as solvent, a different reaction mechanism involving dimeric copper(I) species [(L(R))(2)Cu(I)(2)](2+) is proposed for the oxygenation reactions, supported by kinetic analyses, electrical conductivity measurements, and variable-temperature NMR spectroscopic studies. The present study is the first systematic study investigating both solvent medium and ligand electronic effects in reactions forming copper-dioxygen adducts.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemical synthesis , Oxygen/chemistry , Pyridines/chemical synthesis , Electrochemistry , Indicators and Reagents , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Nitriles/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Pyridines/chemistry , Temperature , Thermodynamics
9.
J Am Chem Soc ; 125(3): 634-5, 2003 Jan 22.
Article in English | MEDLINE | ID: mdl-12526654

ABSTRACT

Copper(I)-dioxygen adducts are important in biological and industrial processes. For the first time we explore the relationship between ligand electronics, CuI-O2 adduct formation and exogenous substrate reactivity. The copper(I) complexes [CuI(R-MePY2)]+ (1R, where R = Cl, H, MeO, Me2N) were prepared; where R-MePY2 are 4-pyridyl substituted bis[2-(2-pyridyl)ethyl]methylamine chelates. Both the redox potential of 1R (ranging from E1/2 = -270 mV for 1Cl to -440 mV for 1MeN vs FeCp2/FeCp2+) and nuCO of the CO adducts of 1R (ranging from 2093 cm-1 for 1Cl-CO to 2075 cm-1 for 1Me2N-CO) display modest but expected systematic shifts. Dioxygen readily reacts with 1H, 1MeO, and 1Me2N, forming the side-on peroxo-CuII2 complexes [{CuII(R-MePY2)}2(O2)]2+ (2R, also containing some bis-mu-oxo-CuIII2 isomer), but there is no reaction with 1Cl. Stopped-flow studies in dichloromethane show that the formation of 2Me2N from dioxygen and 1Me2N proceeds with a k = 8.2(6) x 104 M-2 s-1 (183 K, DeltaH = -20.3(6) kJ mol-1, DeltaS = -219(3) J mol-1 K-1). Solutions of 2R readily oxidize exogenous substrates (9,10-dihydroanthracene --> anthracene, tetrahydrofuran (THF) --> 2-hydroxytetrahydrofuran (THF-OH), N,N-dimethylaniline --> N-methylaniline and formaldehyde, benzyl alcohol --> benzaldehyde, benzhydrol --> benzophenone, and methanol --> formaldehyde), forming the bis-mu-hydroxo-CuII2 complexes [{CuII(R-MePY2)(OH)}2]2+ (3R). Product yields increase as the R-group is made more electron-donating, and in some cases are quantitative with 2Me2N. Pseudo-first-order rate constants for THF and methanol oxidation reactions demonstrate a remarkable R-group dependence, again favoring the strongest ligand donor (i.e., R = Me2N). For THF oxidation to THF-OH a nearly 1500-fold increase in reaction rate is observed (kobs = 2(1) x 10-5 s-1 for 2H to 3(1) x 10-2 s-1 for 2Me2N), while methanol oxidation to formaldehyde exhibits an approximately 2000-fold increase (kobs = 5(1) x 10-5 s-1 for 2H to 1(1) x 10-1 s-1 for 2Me2N).


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Crystallography, X-Ray , Kinetics , Molecular Structure , Oxidation-Reduction
10.
J Am Chem Soc ; 124(16): 4170-1, 2002 Apr 24.
Article in English | MEDLINE | ID: mdl-11960420

ABSTRACT

Copper(I)-dioxygen interactions are of great interest due to their role in biological O2-processing as well as their importance in industrial oxidation processes. We describe here the study of systems which lead to new insights concerning the factors which govern Cu(II)-mu-eta2:eta2 (side-on) peroxo versus Cu(III)-bis-mu-oxo species formation. Drastic differences in O2-reactivity of Cu(I) complexes which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands employed are observed. [Cu(MeAN)]B(C6F5)4 (1) (MeAN = N,N,N',N',N'-pentamethyl-dipropylenetriamine) reacts with O2 at -80 degrees C to form almost exclusively the side-on peroxo complex [{CuII(MeAN)}2(O2)]2+ (3) in CH2Cl2, tetrahydrofuran, acetone, and diethyl ether solvents, as characterized by UV-vis and resonance Raman spectroscopies. In sharp contrast, [Cu(AN)]B(C6F5)4 (2) (AN = 3, 3'-iminobis(N,N-dimethyl-propylamine) can support either Cu2O2 structures in a strongly solvent-dependent manner. Extreme behavior is observed in CH2Cl2 solvent, where 1 reacts with O2 giving 3, while 2 forms exclusively the bis-mu-oxo species [{CuIII(AN)}2(O)2]2+ (4Oxo). Stopped-flow kinetics measurements also reveal significant variations in the oxygenation reactions of 1 versus 2, including the observations that 4Oxo forms much faster than does 3; the former decomposes quickly, while the latter is quite stable at 193 K. The solvent-dependence of the bis-mu-oxo versus side-on peroxo preference observed for 2 is opposite to that reported for other known copper(I) complexes; the factors which may be responsible for the unusual behavior of 1/O2 versus 2/O2 (possibly N-H hydrogen bonding in the AN chemistry) are suggested. The factors which affect bis-mu-oxo versus side-on peroxo formation continue to be of interest.


Subject(s)
Amines/chemistry , Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...