Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(13): 5134-5142, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507805

ABSTRACT

Mitochondria are important organelles that provide energy for cellular physiological activities. Changes in their structures may indicate the occurrence of diseases, and the super-resolution imaging of mitochondria is of great significance. However, developing fluorescent probes for mitochondrial super-resolution visualization still remains challenging due to insufficient fluorescence brightness and poor stability. Herein, we rationally synthesized an ultrabright xanthene fluorescence probe Me-hNR for mitochondria-specific super-resolution imaging using structured illumination microscopy (SIM). The rigid structure of Me-hNR provided its ultrahigh fluorescence quantum yield of up to 0.92 and ultrahigh brightness of up to 16,000. Occupying the para-position of the O atom in the xanthene skeleton by utilizing the smallest methyl group ensured its excellent stability. The study of the photophysical process indicated that Me-hNR mainly emitted fluorescence via radiative decay, and nonradiative decay and inter-system crossing were rare due to the slow nonradiative decay rate and large energy gap (ΔEst = 0.55 eV). Owing to these excellent merits, Me-hNR can specifically light up mitochondria at ultralow concentrations down to 5 nM. The unprecedented spatial resolution for mitochondria with an fwhm of 174 nm was also achieved. Therefore, this ultrabright xanthene fluorescence probe has great potential in visualizing the structural changes of mitochondria and revealing the pathogenesis of related diseases using SIM.


Subject(s)
Fluorescent Dyes , Xanthenes , Fluorescent Dyes/chemistry , Mitochondria , Organelles , Microscopy, Fluorescence/methods
2.
J Inorg Biochem ; 250: 112394, 2024 01.
Article in English | MEDLINE | ID: mdl-37864880

ABSTRACT

Bio-enzymes have the advantages of strong substrate specificity, high catalytic efficiency, and minimal toxic side effects, making them promising drugs in cancer therapy. However, the poor stability and cellular penetrability of uncoated protein in the physiological environment severely restricts the direct application of Bio-enzyme. To address it, we report a metal-organic framework (MOF), Hf-DBA (H2DBA, biphenyl carboxylic acid ligands). The morphology of the Hf-DBA was revealed by TEM and the diameter was in the range of 200 to 350 nm. Hf-DBA acted a carrier for intracellular delivery and protection of horseradish peroxidase (HRP). The prepared HRP@Hf-DBA can catalyze the excess H2O2 in the tumor cells to generation of •OH for chemodynamic therapy (CDT). Compared with free HRP, the catalytic activity of HRP@Hf-DBA is significantly improved, and the optimal catalytic conditions are explored. The catalytic stability of HRP@Hf-DBA remained above 70% after 12 cycles of catalysis. After treatment with HRP@Hf-DBA, the apoptosis rates of A549 and Hela cells was 71.64%, and 76.86%. The results in vitro show that HRP@Hf-DBA can effectively inhibit the growth of tumor cells through enhanced CDT.


Subject(s)
Enzymes, Immobilized , Metal-Organic Frameworks , Humans , Horseradish Peroxidase/metabolism , Enzyme Stability , Metal-Organic Frameworks/pharmacology , Hydrogen Peroxide , HeLa Cells
3.
Acta Biomater ; 159: 247-258, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36724864

ABSTRACT

Development of novel broad-spectrum sterilization is an efficient strategy that can overcome drug resistance and avoid antibiotics abuse toward bacterial-infected diseases. Photothermal therapy (PTT) in the second near-infrared (NIR-II) therapeutic window with an increased tissue penetration and elevated maximal permissible exposure has attracted considerable attention in antibacterial applications. However, the lack of bacterial-targeted photothermal agents limits their further development. Herein, we developed three xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm. Their bulky planar conformations facilitated the formation of H-aggregates with outstanding photothermal conversion ability and good photostability in the NIR-II therapeutic bio window. By manipulating side chains of CNs, their liposomes exhibited different surface charges, ranging from negative to positive. Remarkably, the intermolecular hydrogen bonding of CN3 dimer drived the positively charged xanthene skeleton exposed to the periphery, which endowed it natural bacterial targeting potency. Therefore, CN3 possessed a good NIR-II photothermal and broad-spectrum sterilization against Gram-positive and Gram-negative bacteria. The photothermal antibacterial activities for S. aureus and E. coli were 99.4% and 99.2%, respectively, promoting significant wound healing in bacteria-infected mice with superior biocompatibility. This structure-inherent bacterial targeting strategy as a proof-of-concept shows an efficient broad-spectrum bacterial inactivation, indicating more encouraging NIR-II photothermal antibacterial therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT) in the second near-infrared region (NIR-II, 1000-1700 nm) enables the treatment of deep inflammation more satisfactory due to higher tissue penetration depth. In this work, three new NIR-II xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm were developed. CNs showed typical H-aggregated performance with bulky planar conformations and outstanding photothermal conversion ability. Density functional theory calculations revealed that the intermolecular hydrogen bonding of CN3 dimer drived the exposure of positively charged xanthene skeleton to periphery of dimer. Therefore, CN3 NPs possessed natural bacterial targeting potency and excellent NIR-II photothermal and broad-spectrum sterilization, and so as to significantly promote the wound healing of Gram-positive / negative bacteria infected mice.


Subject(s)
Bacterial Infections , Nanoparticles , Mice , Animals , Nanoparticles/chemistry , Escherichia coli , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Gram-Negative Bacteria , Gram-Positive Bacteria , Coloring Agents , Xanthenes
4.
Biosens Bioelectron ; 217: 114701, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36115125

ABSTRACT

Fluorescence bioimaging via the second near-infrared (NIR-II) window can provide precise images with a low background signal due to attenuated absorption and scattering in biological tissues. However, it is challenging to realize organic fluorophores' absorption/emission wavelength beyond 1300 nm depending on their intrinsic emission of monomers. Reducing parasitic aggregation caused quenching (ACQ) effect is expected as an efficient strategy to achieve fluorescence bioimaging in an ideal region. Herein, two NIR-II xanthene fluorophores (CM1 and CM2) with different side chains on identical skeletons were synthesized. Besides, their corresponding assemblies (CM1 NPs and CM2 NPs) were subsequently prepared, which exhibited distinct spectroscopic properties. Notably, CM2 NPs exhibited a significantly reduced ACQ effect with maximal absorption/emission extended to 1235/1250 nm. Molecular dynamics simulations revealed that intermolecular hydrogen bond, π-π interaction, and CH-π interaction of CM2 were essential for the reduced ACQ effect. In vivo hindlimb angiography showed that CM2 NPs could distinguish the neighboring artery and vein in high resolution. Besides, CM2 NPs could achieve angiography beyond 1300 nm and even resolve capillaries as small as 0.23 mm. This study provides a new strategy for reducing the ACQ effect by controlling different side chains of NIR-II xanthene dyes for angiography beyond 1300 nm.


Subject(s)
Biosensing Techniques , Xanthenes , Angiography , Animals , Fluorescent Dyes/chemistry , Ionophores , Optical Imaging/methods
5.
Small ; 18(29): e2202078, 2022 07.
Article in English | MEDLINE | ID: mdl-35730913

ABSTRACT

Fluorescence (FL) bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides improved imaging quality and high resolution for diagnosis of deep-seated tumors. However, integrating FL bioimaging and photothermal therapy (PTT) in a single photoactive molecule exhibits a great challenge because a dramatic increase of PTT in the NIR-II window benefitting from the nonradiative decay will sacrifice the fluorescence brightness that is unfavorable for FL bioimaging. Therefore, balancing the radiative decay and nonradiative decay is an effective and rational design strategy. Herein, four NIR-II xanthene dyes (CL1-CL4) are synthesized with maximal emission beyond 1200 nm under 1064 nm excitation. CL4 exhibits the largest fluorescence quantum yield and a significant fluorescence enhancement after complexation with fetal bovine serum (FBS). As-prepared CL4/FBS has a maximal emission of 1235 nm and a high photothermal conversion efficiency of 36% under 1064 nm excitation. Bright and refined tumor vessels with a fine resolution of 0.23 mm can be clearly distinguished by CL4/FBS. In vivo studies show that a balanced utilization of fluorescence and photothermy in the NIR-II window is successfully achieved with superior biocompatibility. This efficient strategy provides promising avenue for precise theranostics of deep tumors.


Subject(s)
Nanoparticles , Neoplasms , Angiography , Coloring Agents , Fluorescent Dyes , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Phototherapy , Photothermal Therapy , Theranostic Nanomedicine/methods , Xanthenes
6.
J Mater Chem B ; 10(1): 57-63, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34842264

ABSTRACT

The non-invasive treatment of glioblastoma (GBM) is of great significance and can greatly reduce the complications of craniotomy. Sonodynamic therapy (SDT) is an emerging tumor therapeutic strategy that overcomes some fatal flaws of photodynamic therapy (PDT). Different from PDT, SDT has deep tissue penetration and can be applied in the non-invasive treatment of deep-seated tumors. However, effective sonosensitizers that can be used for SDT of GBM are still very rare. Herein, we have prepared a suitable assembly based on a hypocrellin derivative (CTHB) with good biocompatibility. Excitedly, the hypocrellin-based assembly (CTHB NPs) can effectively produce reactive oxygen species under ultrasound stimulation. The inherent fluorescence and photoacoustic imaging characteristics of the CTHB NPs are conducive to the precise positioning of the tumors. It has been proved both in subcutaneous and in intracranial tumor models that CTHB NPs can be used as an effective sonosensitizer to inhibit tumor growth under ultrasound irradiation. This hypocrellin-based assembly has a good clinical prospect in the non-invasive treatment of GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Glioblastoma/drug therapy , Perylene/analogs & derivatives , Phenol/pharmacology , Quinones/pharmacology , Ultrasonic Therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Humans , Materials Testing , Molecular Structure , Particle Size , Perylene/chemical synthesis , Perylene/chemistry , Perylene/pharmacology , Phenol/chemical synthesis , Phenol/chemistry , Quinones/chemical synthesis , Quinones/chemistry , Ultrasonic Waves
7.
ACS Omega ; 6(40): 26575-26582, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34661012

ABSTRACT

The design and synthesis of single-molecule amphiphilic and multifunctional phototherapeutic agents are important to cancer diagnosis and therapy. In this work, we developed three amphiphilic diketopyrrolopyrrole derivatives (TPADPP, DTPADPP, and TPADDPP) with different donor-acceptor structures and poly(ethylene glycol) side chains. The corresponding nanoparticles (NPs) were obtained via a self-assembly from three amphiphilic DPP derivatives and used as smart phototherapeutic agents for tumor diagnosis and treatment. The three amphiphilic DPP NPs exhibited near-infrared (NIR) emissions and good biocompatibility. Thus, they could be used as fluorescence (FL) imaging agents for guided therapy. DTPADPP NPs and TPADDPP NPs also displayed excellent photothermal performance and high accumulation in the tumor. Owing to these beneficial features, the DTPADPP NPs and TPADDPP NPs synthesized herein are suitable for NIR FL imaging and effective photothermal therapy against the tumor in vivo.

8.
Chem Soc Rev ; 49(11): 3244-3261, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32337527

ABSTRACT

Phototherapy, including photodynamic therapy and photothermal therapy, has the potential to treat several types of cancer. However, to be an effective anticancer treatment, it has to overcome limitations, such as low penetration depth, low target specificity, and resistance conferred by the local tumor microenvironment. As a non-invasive technique, low-intensity ultrasound has been widely used in clinical diagnosis as it exhibits deeper penetration into the body compared to light. Recently, sonodynamic therapy (SDT), a combination of low-intensity ultrasound with a chemotherapeutic agent (sonosensitizer), has been explored as a promising alternative for cancer therapy. As all known cancer treatments such as chemotherapy, photodynamic therapy, photothermal therapy, immunotherapy, and drug delivery have been advanced independently enough to complement others substantially, the combination of these therapeutic modalities with SDT is opportune. This review article highlights the recent advances in SDT in terms of sonosensitizers and their formulations and anticancer therapeutic efficacy. Also discussed is the potential of SDT in combination with other modalities to address unmet needs in precision medicine.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Animals , Drug Delivery Systems , Drug Liberation , Humans , Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Precision Medicine , Ultrasonic Therapy
9.
ACS Appl Bio Mater ; 3(9): 5722-5729, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021803

ABSTRACT

FTC dye with a D-π-A structure showed outstanding stability, high extinction coefficient, and good photothermal performance. Thus, nanoparticles based on FTC dye were first fabricated by a nanoprecipitation method for photothermal therapy (PTT) which was guided by photoacoustic imaging (PAI). The prepared FTC NPs showed a photothermal conversion efficiency of ∼52.71%, good photoacoustic performance, and excellent stability in in vitro experiments. Moreover, FTC NPs showed good performance in tumor ablation under a 635 nm laser irradiation and low cytotoxicity to the mice model without laser treatment. Histopathological analysis further confirmed that FTC NPs did not harm the major organs of mice. Given the abovementioned features, FTC NPs have great potential to be effective phototheranostic materials for PAI and PTT.

10.
ACS Appl Bio Mater ; 3(6): 3817-3826, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-35025252

ABSTRACT

A huge challenge exists in the diagnosis and treatment of malignant glioblastoma (GBM) due to the presence of the blood-brain barrier (BBB). Herein, a multifunctional phototheranostic agent is designed on the basis of an octadecane-modified temozolomide (TMZ-C18) for chemotherapy, a dicysteamine-modified hypocrellin derivative (DCHB) as a natural-origin photosensitizer with a singlet oxygen (1O2) quantum yield of 0.51, and a cyclic peptide (cRGD) as a targeting unit against glioblastoma. Co-encapsulated DCHB and TMZ-C18 assembly with cRGD decoration, referred to as DTRGD NPs, shows a wide absorption at the NIR region peaked at 703 nm, an NIR emission peak at 720 nm, good photostability, high photothermal conversion efficiency (33%), and effective degradation of TMZ-C18. More importantly, DTRGD NPs can efficiently break through the blood-brain barrier and enrich in the orthotopic glioblastoma. The treatment of subcutaneous U87MG tumor beard mice demonstrates that DTRGD NPs present remarkable anticancer efficiency and the targeted chemo/photodynamic/photothermal synergistic therapy can be achieved with almost no toxicity. This multifunctional phototheranostic agent shows great potential for the diagnosis and treatment of glioblastoma.

11.
ACS Appl Mater Interfaces ; 11(48): 44989-44998, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31755268

ABSTRACT

Tumor hypoxia severely limits the therapeutic efficacy of solid tumors in photodynamic therapy. One strategy is to develop photosensitizers with simultaneously high efficiency in photodynamic (PDT) and photothermal therapies (PTT) in a single natural-origin phototheranostic agent to overcome this problem. However, less attention has been paid to the natural-origin phototheranostic agent with high PDT and PTT efficiencies even though they have negligible side effects and are environmentally sustainable in comparison with many reported phototheranostic agents. In addition, almost all clinical applied photosensitizers are of natural origin so far. Herein, we synthesized a natural product-based hypocrellin derivative (AETHB), with a high singlet oxygen quantum yield of 0.64 as an efficient photosensitizer different from commercially available porphyrin-based photosensitizers. AETHB is further assembled with human serum albumin to construct nanoparticles (HSA-AETHB NPs) with a high photothermal conversion efficiency (more than 50%). As-prepared HSA-AETHB NPs have shown good water solubility and biocompatibility, pH and light stability, wide absorption (400-750 nm), and NIR emission centered at 710 nm. More importantly, HSA-AETHB NPs can be applied for fluorescent/photoacoustic dual-mode imaging and simultaneously highly efficient PDT/PTT in hypoxic solid tumors. Therefore, this natural-origin multifunctional phototheranostic agent is showing very promising for effective, precise, and safe cancer therapy in clinical applications.


Subject(s)
Hyperthermia, Induced , Neoplasms/therapy , Perylene/analogs & derivatives , Photochemotherapy , Quinones/chemistry , Serum Albumin/chemistry , Animals , Cell Line, Tumor , Female , Humans , Infrared Rays , Mice , Mice, Nude , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Perylene/administration & dosage , Perylene/chemistry , Phenol , Quinones/administration & dosage , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...