Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 13(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39272574

ABSTRACT

The digestive properties of starch are crucial in determining postprandial glycaemic excursions. Genistein, an active phytoestrogen, has the potential to influence starch digestion rates. We investigated the way genistein affected the digestive properties of starch in vitro. We performed enzyme kinetics, fluorescence spectroscopy, molecular docking, and molecular dynamics (MD) simulations for analysing the inhibitory properties of genistein on starch digestive enzymes as well as clarifying relevant mechanism of action. Our findings demonstrated that, following the addition of 10% genistein, the contents of slowly digestible and resistant starches increased by 30.34% and 7.18%, respectively. Genistein inhibited α-amylase and α-glucosidase, with half maximal inhibitory concentrations of 0.69 ± 0.06 and 0.11 ± 0.04 mg/mL, respectively. Genistein exhibits a reversible and non-competitive inhibiting effect on α-amylase, while its inhibition on α-glucosidase is a reversible mixed manner type. Fluorescence spectroscopy indicated that the presence of genistein caused declining fluorescence intensity of the two digestive enzymes. Molecular docking and MD simulations showed that genistein binds spontaneously to α-amylase via hydrogen bonds, hydrophobic interactions, and π-stacking, whereas it binds with α-glucosidase via hydrogen bonds and hydrophobic interactions. These findings suggest the potential for developing genistein as a pharmacologic agent for regulating glycaemic excursions.

2.
Int J Biol Macromol ; 262(Pt 2): 130050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346627

ABSTRACT

In this study, modified rice flour with high resistant starch (RS) content was prepared by dual hydrothermal treatment, which combined the heat-moisture treatment with the pressure-heat treatment method. The effects of dual hydrothermal treatment on the structure and properties of modified rice flour and their relationship with RS content were further discussed. The results showed that the RS content of modified rice flour was higher than that of rice flour (RF), and dual hydrothermal treatment was more effective than single hydrothermal treatment. Adhesion and aggregation occurred between the particles of modified rice flour. Both crystallinity and short-range ordering were increased in modified rice flour compared to RF. Moreover, the modified rice flour of dual hydrothermal treatment had higher crystallinity and a more ordered short-range structure of starch, which improved RS content to a certain extent. Compared to single hydrothermal treatment, the modified rice flour of dual hydrothermal treatment had a lower viscoelasticity and a better thermal stability. Both RF and modified rice flour gels were composed mainly of free water, with minimal amounts of bound and immobile water. The study may provide a reference for the production and application of modified rice flour.


Subject(s)
Oryza , Resistant Starch , Flour , Starch/chemistry , Viscosity , Water/chemistry , Oryza/chemistry
3.
Int J Biol Macromol ; 259(Pt 1): 129173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181923

ABSTRACT

Modified starch was prepared from japonica starch (JS) by heat-moisture treatments (HMT). Under the same moisture content and HMT temperature, the effects of various HMT times on the structural, properties of JS and its in vitro digestibility properties were investigated. The results showed that adhesion occurred between the particles of japonica starch after the HMT, and there were depressions on the surface. The size of the JS particles increased, the short-range ordering and relative crystallinity of the HMT-modified starch increased and gradually decreased, reaching a peak of 36.51 % at 6 h, as the HMT time was extended. The pasting indexes of HMT-modified starch decreased and then increased with the increase of the HMT time; compared with JS, the thermal stability of HMT-modified starch increased while the pasting enthalpy decreased. All the HMT-modified starches were weakly gelatinous systems and pseudoplastic fluids. Following HMT, the amount of resistant starch (RS) and slowly digested starch (SDS) grew initially before declining. The amount of RS in HMT-modified starch peaked at 24.28 % when the HMT time was 6 h. The results of this research can serve as a theoretical foundation for the creation of modified japonica starch and its use in the food industry.


Subject(s)
Hot Temperature , Starch , Starch/chemistry , Temperature , Thermodynamics , Resistant Starch
SELECTION OF CITATIONS
SEARCH DETAIL