Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Sci Rep ; 14(1): 10435, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714737

ABSTRACT

During takeoff and landing, birds bounce and grab with their legs and feet. In this paper,the lower limb structure of the bionic bird is designed with reference to the function of jumping and grasping, and the PID algorithm based on the development module of stm32 development board is used to speed control the lower limb driving element, so that the motor and the bishaft steering gear move with the rate change of sine wave. According to the speed of grasping response time and the size of grasping force, the structure of the bionic bird paw is designed. Based on the photosensitive sensor fixed in the geometric center of the foot, the grasping action of the lower limb mechanism is intelligently controlled. Finally, the kinematic verification of the lower limb structure is carried out by ADAMS. Experiments show that the foot structure with four toes and three toes is more conducive to maintaining the stability of the body while realizing the fast grasping function. In addition, it can effectively improve the push-lift ratio of the bionic ornithopter by adjusting the sinusoidal waveform rate of the motor speed.


Subject(s)
Bionics , Birds , Animals , Birds/physiology , Biomechanical Phenomena , Algorithms , Equipment Design , Flight, Animal/physiology
2.
PLoS One ; 19(4): e0297936, 2024.
Article in English | MEDLINE | ID: mdl-38578717

ABSTRACT

Aiming at the problems of high vibration and high noise in gear transmission systems, a model of gear with staggered tooth phase structure(GSTPS) for reducing vibration is proposed. Without changing the overall structure of the gear transmission system, the purpose of reducing mesh stiffness fluctuations is achieved by staggering adjacent gears at a certain angle along the axis, thereby the vibration of the gear transmission system could be reduced. The characterization method of time-varying mesh stiffness of the GSTPS is studied. Then, the impact of different staggered tooth phases(STP) on reducing vibration of the transmission system are researched, and the basis for selecting the optimal STP are obtained. The experimental platform for reducing vibration with STP is established. And some experimental studies were conducted to validate the theoretical model.


Subject(s)
Physical Therapy Modalities , Vibration
3.
Heliyon ; 10(2): e24940, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312617

ABSTRACT

This study systematically optimized the key operating parameters and interpreted their effecting mechanisms in a flow-electrode capacitive deionization (FCDI) system. The optimal voltage, activated carbon electrode content, electrolyte concentration, feedwater flowrate, and electrode flowrate for desalinating low salinity feedwater (1.0 g L-1 NaCl) were determined to be 1.8 V, 2.0 wt%, 10.0 g L-1, 80 mL min-1, and 60 mL min-1, respectively. The variations of the above parameters can affect the system conductivity, the thickness and stability of the electric double layers, and/or the degree of concentration polarization, thereby influencing the desalination performance. Moreover, a sensitivity analysis identified the operating voltage as the dominant parameter with the most significant influence on the FCDI system. Subsequently, a long-term operation was carried out under single-pass mode. The results showed that the lab-scale FCDI system was able to constantly maintain the desalination efficiency of 1.0 g L-1 feedwater (NaCl) at 40-60 % for multiple operating cycles. Over 99.8 % of electrode material regeneration and desalination efficiency recovery was able to be obtained during a 60-h operation, demonstrating that the FCDI system showed strong stability and long-term operation potential.

4.
ISA Trans ; 146: 29-41, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104021

ABSTRACT

The uncertainty in mobile robot greatly affects control accuracy. This makes it difficult to apply to more rigorous high-precision engineering fields. Therefore, the fuzzy set theory is introduced to describe the uncertainty. Based on that, the fuzzy mobile robot system is established. The virtual speed controller using backstepping method is designed. Then, a robust control method is proposed to guarantee the uniform boundedness and uniform ultimate boundedness of the controlled system. Furthermore, the balance optimization problem of the performance and cost of the controlled system is explored. By minimizing the performance index containing fuzzy numbers, the optimal control parameter is obtained. Compared with the linear quadratic regulator algorithm, which is the representative optimal robust controller, the proposed control method and optimization strategy based on fuzzy set theory are verified to be effective. The control accuracy is further improved.

5.
Hum Cell ; 36(5): 1741-1754, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37368192

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide with high mortality rate, and the N6-methyladenosine (m6A) epigenetic modifications have been reported to be closely associated with the pathogenesis of HCC, but the detailed molecular mechanisms by which m6A regulates HCC progression have not been fully delineated. In this study, we evidenced that the m6A methyltransferase-like 3 (METTL3)-mediated m6A modification contributed to HCC aggressiveness through modulating a novel circ_KIAA1429/miR-133a-3p/HMGA2 axis. Specifically, circ_KIAA1429 was aberrantly overexpressed in HCC tissues and cells, and the expression levels of circ_KIAA1429 was positively regulated by METTL3 in HCC cells in a m6A-dependent manner. Then, functional experiments confirmed that deletion of both circ_KIAA1429 and METTL3 suppressed HCC cell proliferation, migration and cell mitosis in vitro and in vivo, and conversely, circ_KIAA1429 overexpression had opposite effects to accelerate HCC development. Furthermore, the downstream mechanisms by which circ_KIAA1429 regulated HCC progression were uncovered, and we validated that silencing of circ_KIAA1429 restrained the malignant phenotypes in HCC cells through modulating the miR-133a-3p/high mobility group AT-hook 2 (HMGA2) axis. To summarize, our study firstly investigated the involvement of a novel METTL3/m6A/circ_KIAA1429/miR-133a-3p/HMGA2 axis in regulating HCC development, which provided novel indicators for HCC diagnosis, therapy and prognosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Circular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , HMGA2 Protein/metabolism
6.
J Mater Chem B ; 11(22): 5000-5009, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37218895

ABSTRACT

Glucose-sensitive membranes have promising applications in insulin release. Phenylboronic acid (PBA) is an important glucose reporter. Most of PBA-based glucose-sensitive materials are expansion-type, which cannot act as chemical valves in porous membranes for self-regulated insulin release. In this study, a glucose-sensitive membrane with PBA-based contraction-type amphiphilic block copolymer polystyrene-b-poly(N-isopropylacrylamide-co-2-(acrylamido) phenylboronic acid) (PSNB) as chemical valves was constructed through non-solvent induced phase separation (NIPS) method. Due to surface segregation, hydrophobic polystyrene (PS) component can anchor in the membrane matrix to improve the stability of the membrane, and glucose-sensitive hydrophilic poly(N-isopropylacrylamide-co-2-(acrylamido) phenylboronic acid) (PNB) component can expose on the surfaces of the membrane and the channels to provide glucose-sensitivity of the membrane. With increasing the polymer content or chain length of the hydrophilic component, the glucose sensitivity of the membrane was improved. The blend membrane showed glucose-sensitive insulin release behavior in simulated body fluids (SBF) and fetal bovine serum (FBS). The membrane also exhibited good antifouling properties and biocompatibility.


Subject(s)
Ether , Insulin , Insulin/chemistry , Polystyrenes , Glucose/chemistry , Polymers/chemistry , Insulin, Regular, Human , Ethers , Sulfones
7.
Materials (Basel) ; 16(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37049121

ABSTRACT

To improve the interfacial compatibility between cement matrix and expanded polystyrene (EPS) in core-shell lightweight aggregates (CSLA), the effects of sodium silicate, polyvinyl acetate (PVA) emulsion, vinyl acetate-ethylene (VAE) emulsion, acrylic acid, and acetic acid on the cement-EPS interface were investigated. The density of the interface was studied by scanning electron microscopy (SEM), and the effect of interfacial agents on the hydration process of cement was studied by the heat of hydration and induction resistivity. The macroscopic properties of the interface of the CSLA were characterized by the "leak-white" rate, drop resistance, and numerical crushing strength. The results show that the sodium silicate densifies the interface by generating hydration products on the EPS surface. At the same time, organic acid enhances the interfacial properties of EPS and cement by increasing the surface roughness, and allowing hydration products to grow in the surface micropores. In terms of the cement hydration process, both interfacial agents delay the cement hydration. Above all, with comprehensive interface properties, "leak-white" rate, and mechanical properties, VAE emulsion and sodium silicate can achieve the best performance with a final crushing resistance of 5.7 MPa, which had a 46% increase compared with the reference group.

8.
Environ Sci Pollut Res Int ; 30(12): 34255-34269, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36508101

ABSTRACT

Due to the influence of complex regional climate, water quality perturbation factors of lakes in cold regions are complicated, and the uncertainty of each factor needs further study. This study coupled two algorithms (clustering and EM) to establish a water quality uncertainty model of Chagan Lake, a typical cold region lake in China. A BN model containing nine influencing factors (including water temperature (WT), total phosphorus (TP), total nitrogen (TN), etc.) was established and optimized, and sensitivity analysis was also performed. The results indicate that the water quality status of the lake is class III and 27.47% risk of exceeding the standard. The water quality of the lake is more susceptible to disturbance during the freezing period (WT < 1 °C). TP is the most sensitive factor for water quality disturbance in the lake followed by chemical oxygen demand (COD), TN, and fluoride (F). Parameter control result displays, and the multifactor synergistic control scheme could reduce the water quality risk of the lake by 36.47%. This study demonstrates that our proposed method can be used to predict both sudden water quality events and the overall trend of water quality fluctuation, which is important for rapid water quality evaluation and management decisions.


Subject(s)
Water Pollutants, Chemical , Water Quality , Environmental Monitoring/methods , Lakes , China , Temperature , Phosphorus/analysis , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Eutrophication
9.
Article in English | MEDLINE | ID: mdl-36212967

ABSTRACT

To further determine how BHE affected the growth of HCC cells, the proportion of each cell cycle phase was explored in HCC cells by flow cytometry. Blue honeysuckle (Lonicera caerulea L.) is a species of bush that grows in eastern Russia. Blue honeysuckle extract (BHE) is rich in bioactive phytochemicals which can inhibit the proliferation of tumor cells. The mechanism underlying the anticancer activity of BHE in primary liver cancer is poorly understood. The purpose of this study was to evaluate the growth inhibition mechanism of bioactive substances from blue honeysuckle on hepatocellular carcinoma (HCC) cells and to explore its protein and gene targets. The compounds in BHE were determined by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Cell counting kit-8 (CCK8) assay was used to evaluate the effects of BHE on HCC cell proliferation, and flow cytometry assay (FCA) was used to determine how BHE arrested the proportion of each cell cycle phase in HCC cells. Western blot (WB) was performed to determine the expression of cell cycle-related proteins in HCC cells treated with different concentrations of BHE. The xenograft tumor animal models were established by HCC cell implantation. The results showed that cyanidin-3-o-glucoside and cyanidin-3-o-sophoroside which are the main biologically active components were detected in BHE. BHE is highly effective in inhibiting the proliferation of HCC cells by arresting the HCC cell cycle in the G2/M phase. BHE also downregulated the expression of conventional or classical dendritic cells-2 (cDC2) and cyclin B1 by promoting the expression of myelin transcription factor 1 (MyT1) in HCC cells. The weight and volume of xenografts were significantly decreased in the BHE treated groups when compared to the control group. BHE increased the expression of MyT1 in xenograft tissues. These findings showed that blue honeysuckle extract inhibits proliferation in vivo and in vitro by downregulating the expression of cDC2 and cyclin B1 and upregulating the expression of MyT1 in HCC cells.

10.
Sci Total Environ ; 850: 157963, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35952871

ABSTRACT

Electro-oxidation (EO) has received increasing attention as an efficient and green method for removing pollutants from wastewater. Chloride anions (Cl-), which commonly exist in wastewater, can act as an electrolyte for the EO process. However, the role of reactive chlorine species (RCS) generated near electrodes is often underestimated. In this study, we generated hydroxyl radicals (OH) and RCS in a boron-doped diamond (BDD) electrode system and investigated its degradation mechanism for ofloxacin (OFX) removal. The findings suggested that OFX degradation was dominated by OH existing near the anode in solution, with RCS playing a supporting role. Based on the produced intermediates, we proposed an OFX decomposition pathway. The biological toxicities of the intermediates were evaluated through the ECOSAR and T.E.S.T. procedure. Nearly half of the intermediates are less toxic than the parent compound. After optimizing the operating parameters by the response surface methodology, 20 mg/L OFX was almost completely degraded after 10 min of reaction in 1.45 g/L NaCl with a current density (j) of 18 mA/cm2, and the total organic carbon was decreased by 30.55 %. The energy consumption and current efficiency were 0.648 kW·h/gTOC and 8.65 %, respectively. Comparing the operating costs of the proposed and other EO methods, our method emerged as a viable new treatment scheme for similar polluted wastewaters. This study aims to comprehensively understand the potential application value of BDD electrodes in the treatment of Cl- containing organic wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Boron , Chlorides , Chlorine , Diamond , Electrodes , Ofloxacin , Oxidation-Reduction , Sodium Chloride , Water Pollutants, Chemical/analysis
11.
Materials (Basel) ; 15(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454446

ABSTRACT

The use of phase change materials (PCMs) in the construction industry is one of the primary strategies for addressing the building industry's present excessive energy usage. However, since PCMs must be enclosed before being used in construction, their efficiency is limited and their compatibility with concrete is poor. Thus, polyethylene glycol (PEG), a sequence of PCMs that may be put directly into concrete, is the target of this research. The fluidity, mechanical properties, thermal properties, hydration process, and hydration products of PEG-600 cement slurry were examined by TAM, XRD, FTIR, DSC, MALDI, etc., methods in this study. Furthermore, we tested the thermal properties of PEG-800 to confirm that the same depolymerization of PEG occurred in an alkaline environment. When PEG, with a molecular weight of 600 (PEG-600), dose was increased to 10%, both compressive and flexural strength fell by 19% and 18%, respectively. The phase change points of both PEG-600 cement paste and PEG-800 cement paste decreased to 10~15 °C, and the enthalpy of the phase change was about 6 J/g. Additionally, it was discovered that PEG entered the reaction during the hydration step. PEG underwent depolymerization and subsequently formed a complex with Ca2+. However, due to the large dose of PEG used in this investigation, a self-curing effect of PEG in concrete was not seen. The findings of this research suggest a novel use for PCMs: PEG may be directly applied to concrete to fulfill both mechanical and thermal requirements. Additionally, the number of hydration products and phase compositions remained almost constant.

12.
Chemosphere ; 300: 134593, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427670

ABSTRACT

Membrane fouling is generally considered as a major bottleneck to the wide application of membrane bioreactor (MBR) for high saline mariculture wastewater treatment. Though numerous researches have investigated the membrane fouling of MBR combined with bio-carriers, few studies reveal the impacts of bio-carriers on the characteristics of cake layer and the mechanism of bio-carriers alleviating membrane fouling. In this study, two systems, namely carriers-enhanced MBR (R1) and conventional MBR (R2) were parallel operated, drawing a conclusion that bio-carriers effectively improved the characteristics of cake layer, thus mitigating membrane fouling. Fluorescence excitation emission matrix (EEM) analysis indicated that bio-carriers reduced the adhesion of proteins and humic acid-like materials on membrane surface. Molecular weight (Mw) distribution suggested that soluble microbial products (SMP) with small Mw (6-20 kDa) and biopolymers in extracellular polymeric substances (EPS) (50-300 kDa) was easier to accumulate on membrane surface in R2. The above results indicated that the presence of bio-carriers could effectively reduce the attachment of these organics on membrane surface, contributing to a larger porosity of cake layer and thus mitigating membrane fouling. Meanwhile, gas chromatography-mass spectrometry (GC-MS) clarified that more components were present in R2 than R1. Moreover, the majority of compounds in the SMP were present in both systems, while only 14 compounds in the EPS were the same between R1 and R2. Noticeably, certain aromatics only existed in R2, suggesting that bio-carriers effectively reduced the accumulation of recalcitrant materials, especially aromatics. These results revealed that bio-carriers shifted the precise composition of cake layers.


Subject(s)
Wastewater , Water Purification , Bioreactors , Humic Substances , Membranes, Artificial , Sewage , Wastewater/chemistry
13.
Front Oncol ; 12: 784183, 2022.
Article in English | MEDLINE | ID: mdl-35449575

ABSTRACT

Human cell division cycle-related protein 8 (CDCA8) is an essential component of the vertebrate chromosomal passenger complex (CPC). CDCA8 was confirmed to play a role in promoting malignant tumor progression. However, the exact function of CDCA8 in the development and progression of prostate cancer (PCa) remains unclear. In this study, the database GSE69223 was downloaded by the gene expression omnibus (GEO) database, as well as CDCA8 expression differences in multiple tumor tissues and normal tissues were detected by The Cancer Genome Atlas (TCGA), TIMER, Oncomine, and Ualcan databases. Kaplan-Meier and Cox regression methods were used to analyze the correlation between CDCA8 expression and prognosis in PCa. We confirmed the expression of CDCA8 in PCa tissues by HPA. We also analyzed the association of CDCA8 expression with PCa clinical characteristics in the TCGA database. To further understand the role of CDCA8 in PCa, we assessed the effects of CDCA8 on PCa cell growth, proliferation, and migration in vitro studies. As a result, CDCA8 was significantly overexpressed in PCa cells compared with normal prostate cells. High CDCA8 expression predicts poor prognosis in PCa patients, and CDCA8 expression was higher in high-grade PCa. In addition, silencing of CDCA8 significantly inhibited PCa cell proliferation and migration. In summary, CDCA8 promoted the proliferation and migration of PCa cells.

14.
J Hazard Mater ; 432: 128641, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35339835

ABSTRACT

Colloidal biliquid aphron (CBLA) is a strong density modifier for dense nonaqueous phase liquids (DNAPLs). However, the underlying mechanisms responsible for density modification and displacement is not yet clear. Here, a series of batch column and sandbox experiments were conducted to achieve substantial removal and irreversible density reduction of tetrachloroethylene (PCE). The mass of PCE retained in the column and sandbox was less than 1% under suitable injection conditions, and the density of PCE in the effluent was less than that of water (fluctuated in the range of 0.74-0.96 g/cm3). The displacement process was controlled by the high viscosity ratio of CBLA to PCE (52.3). The emulsified and dissolved phase of PCE formed after reaction with CBLA, and the light nonaqueous phase liquid (LNAPL) phase formed after injecting demulsifier solution. The phase analysis played a significant role in monitoring the changes in concentration and density of PCE. The density-modification displacement technique using CBLA reduced the mass of residual PCE by a factor of 165 compared to surfactant flushing, and there was no risk of downward migration of PCE. This study contributes to a better remediation of entrapped DNAPL in contaminated aquifer.


Subject(s)
Groundwater , Tetrachloroethylene , Water Pollutants, Chemical , Surface-Active Agents/analysis , Tetrachloroethylene/analysis , Water Pollutants, Chemical/analysis
15.
J Environ Manage ; 306: 114467, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35026712

ABSTRACT

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.


Subject(s)
Soil Pollutants , Soil , Adsorption , Benzene , Neural Networks, Computer , Soil Pollutants/analysis
16.
Sci Total Environ ; 807(Pt 3): 151057, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34710427

ABSTRACT

Using colloidal biliquid aphrons (CBLAs) for density control has been proved to a promising technology in dense non-aqueous phase liquids (DNAPLs) contaminated aquifer remediation. However, the transport and distribution of CBLAs in aquifer is an urgent issue for actual application in groundwater. Especially considering the fact that CBLAs have a lower density than water. In this work, the role of buoyancy force on CBLA transport in water-saturated sandbox was investigated, and the force model of CBLA in pore space was developed. Furthermore, the density regulation of trichloroethylene (TCE) in sandbox was studied using CBLA. We found that buoyancy plays a significant role compared with other interaction forces in the transport of CBLA, and the sine of the rising angle of CBLA has a significant correlation with the force on CBLA. CBLA at 5 times the volume of TCE displaced the TCE at the bottom of the tank by upward mobility and the maximum concentration dramatically decreased to 31.23 mg/L. These results can be used for predicting the transport of CBLA (as well as other remediation reagents that are less dense than water) in aquifer and are beneficial to the subsequent remediation application of CBLA in actual contaminated sites.

17.
Sci Total Environ ; 810: 151955, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34843788

ABSTRACT

The widespread use of veterinary antibiotics has led to the significant problem of contamination of livestock wastewater with significant amount of antibiotics. Electrocoagulation (EC) has become a prominent research topic because of the technique's ability to remove antibiotics from livestock wastewater. However, an urgent solution is needed to reduce the high operating costs associated with the process. Therefore, in this study, we developed a positive single pulse current (PSPC)-EC system to remove tetracycline (TC) from synthetic and actual livestock wastewater. Influential factors were investigated, and the optimal PSPC-EC operating parameters were identified as follows: duty ratio = 60%, pH = 4, electrode spacing = 1 cm, current intensity = 0.2 A, and conductivity = 2 mS cm-1. The mechanism of PSPC-EC was characterised using techniques including scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The TC decomposition pathway was proposed based on the generation of its intermediate products. A toxicity estimation software tool (TEST) model was used to evaluate the toxicity of TC and its main degradation products, and most of its intermediates were found to be less toxic than TC. The contribution ratios of floc adsorption and electrochemical oxidation for removing TC were 74.17% and 21.48%, respectively. The highest TC removal rate reached 95% with an operating cost of 0.011 USD/m3. Finally, under the optimum conditions identified, actual livestock wastewater was treated by PSPC-EC. Compared with conventional EC and coagulation treatment techniques that consume electricity and produce pollution, the results indicate that the PSPC-EC technique with changing current operation mode is a more cost-effective and attractive option for removing TC from livestock wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents , Electrocoagulation , Electrodes , Livestock , Tetracycline/toxicity , Waste Disposal, Fluid , Water Pollutants, Chemical/toxicity
18.
J Hazard Mater ; 415: 125667, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33756198

ABSTRACT

The use of colloidal biliquid aphron (CBLA) as density modifier to reduce the density of dense nonaqueous phase liquids (DNAPLs) irreversibly is an efficient strategy to control the migration of DNAPLs in contaminated aquifers. However, the process and mechanism of the density regulation using CBLA is still not clear and there is still a big gap in the application of CBLA in actual contaminated sites. In this study, we carried out density modification of 5 DNAPLs (nitrobenzene (NB), dichloromethane (DCM), trichloroethylene (TCE), carbon tetrachloride (CTC), perchloroethylene (PCE)) using CBLA and studied the effect of co-existing ions by 3D response surface method. We found that DNAPLs changed to light nonaqueous phase liquids (LNAPLs) and float up after interaction with light organic liquid from CBLA. The density modification process is limited by the demulsificaiton of CBLA and the density of DNAPL itself. Density regulation of DNAPLs followed pseudo-second-order kinetics. The co-existing ions affected the stability of CBLA and the demulsification ability of the demulsifier. Aquifer materials and low temperature did not influence the density control effect of CBLA. This research advances the practical application of density control of DNAPLs using CBLA, and makes important contributions for subsequent combined remediation approach.

19.
Membranes (Basel) ; 10(9)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933156

ABSTRACT

In this study, the characteristics of activated sludge flocs were investigated and their effects on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors (AnMBR), which were operated at 25 and 35 °C for municipal wastewater treatment. It was found that the membrane fouling rate of the AnMBR at 25 °C was more severe than that at 35 °C. The membrane fouling trends were not consistent with the change in the concentration of soluble microbial product (SMP). The larger amount of SMP in the AnMBR at 35 °C did not induce more severe membrane fouling than that in the AnMBR at 25 °C. However, the polysaccharide and protein concentration of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 °C in comparison with that in the AnMBR at 35 °C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 °C was higher in contrast to that in the AnMBR at 35 °C. Meanwhile, the fouling tendencies measured for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS. The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle size and more fine flocs were observed at the AnMBR with 25 °C. Therefore, the membrane fouling potential in the AnMBR could be explained by the characteristics of activated sludge flocs.

20.
Sci Total Environ ; 737: 140287, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32783864

ABSTRACT

To gain greater insights into impacts of bio-carriers on the fate and characteristics of soluble microbial products (SMPs) for mariculture wastewater treatment, the hybrid membrane bioreactor (HMBR) and conventional membrane bioreactor (CMBR) were investigated. Both protein and polysaccharide exhibited lower level in HMBR (8.95 ± 0.28 mg/L and 20.49 ± 1.3 mg/L for anoxic stage, 5.16 ± 0.22 mg/L and 17.85 ± 0.92 mg/L for aerobic stage) than CMBR (14.6 ± 0.68 mg/L and 28.3 ± 2.99 mg/L for anoxic stage, 10.53 ± 0.68 and 26.04 ± 3.15 mg/L for aerobic stage). Three-dimensional fluorescence excitation emission matrix (EEM) revealed bio-carriers reduced the production of aromatic protein-like components in anoxic and aerobic supernatant and caused a blue-shift of soluble microbial product in aerobic stage. Molecular weight (Mw) distribution indicated that bio-carriers ameliorated the excretion of biopolymer (Mw > 500 kDa) in anoxic supernatant and intermediate Mw fractions (20-500 kDa) in aerobic supernatant. Moreover, little changes were observed in SMPs with Mw < 3 kDa down the whole treatment process of both systems. Gas chromatography-mass spectrometry (GC-MS) demonstrated that the major SMPs were long-chain alkanes and aromatics in all units of both systems and fewer aromatics were detected in HMBR. For anoxic stage, more peaks were identified in the HMBR (138) than CMBR (115), while for aerobic stage, more compounds were observed in the CMBR (94) than HMBR (70). Over 50% of the compounds in the anoxic supernatant for the HMBR were the same as in the CMBR. And 27 compounds were the same in aerobic supernatant for the HMBR and CMBR. Fewer compounds in the HMBR effluent (52) was observed, compared to CMBR effluent (80). Approximately 25.7% of compounds in the aerobic stage of the HMBR were rejected by membrane, while this value decreased to 14.9% in the CMBR.


Subject(s)
Waste Disposal, Fluid , Wastewater , Bioreactors , Membranes, Artificial , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...