Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893354

ABSTRACT

Metal halide perovskites have attracted considerable attention as novel optoelectronic materials for their excellent optical and electrical properties. Inorganic perovskites (CsPbX3, X = Cl, Br, I) are now viable alternative candidates for third-generation photovoltaic technology because of their high photoelectric conversion efficiency, high carrier mobility, good defect tolerance, simple preparation method and many other advantages. However, the toxicity of lead is problematic for practical implementation. Thus, the fabrication of lead-free perovskite materials and devices has been actively conducted. In this work, the energy band and photoelectric properties of inorganic perovskites CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) have been investigated with the first principles calculation, and the possible defect energy levels and their formation energies in different components, in particular, have been systematically studied. The advantages and disadvantages of Sn and Ge as replacement elements for Pb have been demonstrated from the perspective of defects. This study provides an important basis for the study of the properties and applications of lead-free perovskites.

2.
Molecules ; 28(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37687241

ABSTRACT

Tin-based perovskites are promising for realizing lead-free perovskite solar cells; however, there remains a significant challenge to achieving high-performance tin-based perovskite solar cells. In particular, the device fill factor was much lower than that of other photovoltaic cells. Therefore, understanding how the fill factor was influenced by device physical mechanisms is meaningful. In this study, we reported a method to improve the device fill factor using a thin cesium iodide layer modification in tin-based perovskite cells. With the thin passivation layer, a high-quality perovskite film with larger crystals and lower charge carrier densities was obtained. As a result, the series resistance of devices was decreased; the shunt resistance of devices was increased; and the non-radiative recombination of devices was suppressed. Consequently, the fill factor, and the device efficiency and stability were greatly enhanced. The champion tin-based perovskite cells showed a fill factor of 63%, an efficiency of 6.1% and excellent stability. Our study reveals that, with a moderate thin layer modification strategy, the long-term stability of tin-based PSCs can be developed.

3.
Molecules ; 28(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175196

ABSTRACT

The power conversion efficiency of modern perovskite solar cells has surpassed that of commercial photovoltaic technology, showing great potential for commercial applications. However, the current high-performance perovskite solar cells all contain toxic lead elements, blocking their progress toward industrialization. Lead-free tin-based perovskite solar cells have attracted tremendous research interest, and more than 14% power conversion efficiency has been achieved. In tin-based perovskite, Sn2+ is easily oxidized to Sn4+ in air. During this process, two additional electrons are introduced to form a heavy p-type doping perovskite layer, necessitating the production of hole transport materials different from that of lead-based perovskite devices or organic solar cells. In this review, for the first time, we summarize the hole transport materials used in the development of tin-based perovskite solar cells, describe the impact of different hole transport materials on the performance of tin-based perovskite solar cell devices, and summarize the recent progress of hole transport materials. Lastly, the development direction of lead-free tin-based perovskite devices in terms of hole transport materials is discussed based on their current development status. This comprehensive review contributes to the development of efficient, stable, and environmentally friendly tin-based perovskite devices and provides guidance for the hole transport layer material design.

4.
Phys Chem Chem Phys ; 24(45): 27585-27605, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36373364

ABSTRACT

In recent years, lead halide perovskite materials have attracted great interest and are widely used in solar cells and light-emitting devices due to their high photoelectronic quantum yield, high color purity, high defect tolerance, long diffusion length, high carrier mobility, and bandgap tunability. However, the application of lead halide perovskites is limited due to the presence of Pb, making lead-free perovskites an important substitute due to their same crystal structure and similar properties. Although some reports have been made on lead-free perovskite materials, there are still great challenges to realize their application due to their poor stability, easy phase transition, and low photoelectric conversion efficiency. Here, we mainly summarize the development and application of ABX3-type lead-free halide perovskite materials, especially in optoelectronic devices. The article first introduces the lattice and energy band structure, the optoelectronic properties of lead-free perovskites, including the research method of lead-free perovskites, and then analyzes the reasons for the low luminous efficiency and poor stability of lead-free perovskite materials. Second, the development history and current situation of lead-free perovskites in different optoelectronic device applications are summarized. Finally, we present the challenges and prospects for the future development of lead-free perovskites.

5.
Materials (Basel) ; 15(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36143694

ABSTRACT

Since their discovery, ferroelectric materials have shown excellent dielectric responses, pyroelectricity, piezoelectricity, electro-optical effects, nonlinear optical effects, etc. They are a class of functional materials with broad application prospects. Traditional pure inorganic piezoelectric materials have better piezoelectricity but higher rigidity; pure organic piezoelectric materials have better flexibility but havetoo small a piezoelectric coefficient. The material composite, on the other hand, can combine the advantages of both, so that it has both flexibility and a high piezoelectric coefficient. In this paper, a new molecular piezoelectric material (C5H11NO)2PbBr4 with a high Curie temperature Tc and a large piezoelectric voltage constant g33, referred to as (ATHP)2PbBr4, was used to prepare a 0-3 type piezoelectric composite film by compounding with an organic polymer material polyvinylidene fluoride (PVDF), and its ferroelectricity was investigated. The results show that the 0-3 type (ATHP)2PbBr4 piezoelectric composite film has good ferroelectricity and piezoelectricity, and the calculated piezoelectric voltage constant g33 after polarization is about 358.6 × 10-3 Vm/N, which is higher than that of PVDF material, and is important for the fabrication of high-performance piezoelectric sensors.

6.
Glycoconj J ; 39(1): 131-141, 2022 02.
Article in English | MEDLINE | ID: mdl-35286528

ABSTRACT

Antibiotic-associated diarrhea (AAD) is a common side-effect of antibiotic treatment resulting from an imbalance in the colonic bacteria. The hypothesis of this study is to ask whether polysaccharide from the rhizome of Dioscorea opposita which is recorded as conventional herbs and food for diarrhea treatment in Southeast Asia, may be an active compound against diarrhea induced by antibiotics. To address, firstly, a homogenous polysaccharide, DOP0.2-S-3 was characterized as a homogalacturonan containing linear repeating units of → 4)-α-D-GalAp(1 → 4)-α-D-GalAp(1 → with the average molecular weight of 14 kDa. DOP0.2-S-3 significantly reduced the water content and defecation times caused by AAD in mice, while it also remarkably attenuated the cytokines of IL-1ß and IL-6 expression in mice colon tissues. DOP0.2-S-3 decreased potential pathogen and increased Bacteroidetes in the mice gut. These results suggested DOP0.2-S-3 might be a new leading compound for the functional foods or drug candidate development against AAD partially through regulating gut flora.


Subject(s)
Dioscorea , Animals , Diarrhea/chemically induced , Diarrhea/drug therapy , Interleukin-1 , Interleukin-6/genetics , Mice , Pectins
7.
Materials (Basel) ; 15(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35009467

ABSTRACT

Photoelectric devices can be so widely used in various detection industries that people began to focus on its research. The research of photoelectric sensors with high performance has become an industry goal. In this paper, we prepared photodetectors using organic-inorganic hybrid semiconductor materials with narrow bandgap hexane-1,6-diammonium pentaiodobismuth (HDA-BiI5) and investigated the detector photoresponse and time-response characteristics under a single light source. The device exhibits high photoresponsivity and fast response time. The photoresponsivity can reach 1.45 × 10-3 A/W and 8.5 × 10-4 A/W under laser irradiation at 375 nm and 532 nm wavelengths, and the rise and decay times are 63 ms and 62 ms, 62 ms and 64 ms, respectively. The device has excellent performance and this work can extend the application of organic-inorganic hybrid semiconductor materials in photovoltaic and photodetectors.

8.
Materials (Basel) ; 14(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923298

ABSTRACT

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.

9.
RSC Adv ; 10(30): 17635-17641, 2020 May 05.
Article in English | MEDLINE | ID: mdl-35515610

ABSTRACT

Colloidal all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) nanocrystals (NCs) are very important optoelectronic materials and have been successfully utilized as bright light sources and high efficiency photovoltaics due to their facile solution processability. Recently, rare-earth dopants have opened a new pathway for lead halide perovskite NCs for applications in near-infrared wave bands. However, these materials still suffer from serious environmental instability. In this study, we have successfully developed a facile method for fabricating all-inorganic SiO2-encapsulated Yb3+-doped CsPbBr3 NCs by slowly hydrolyzing the organosilicon precursor in situ. Experimental results showed that the Yb3+ ions were uniformly distributed in the NCs, and the whole NCs were completely encapsulated by a dense SiO2 layer. The as-prepared SiO2-encapsulated NCs can emit a strong near-infrared (985 nm) photoluminescence, which originates from the intrinsic luminescence of Yb3+ in the NCs, pumped by the perovskite host NCs. Meanwhile, the SiO2-encapsulated NCs possessed excellent high PLQYs, narrow FWHM, and excellent environmental stability under a room atmosphere for over 15 days. We anticipate that this work will be helpful for promoting the optical properties and environmental stability of perovskite NCs and expanding their practical applications to near infrared photodetectors and other optoelectronic devices.

10.
Carbohydr Polym ; 218: 299-306, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31221333

ABSTRACT

Dioscorea opposita Thunb. is widely used as functional foods and traditional Chinese medicine in China for its activity of regulating function of spleen and stomach. Polysaccharides may contribute to the function of regulation. To investigate structure features and bioactivities of polysaccharides from D. opposita, the rhizome of D. opposita was extracted with boiling water, yielding crude polysaccharides DOP. A novel polysaccharide named DOP0.1-S-1 was isolated from DOP by further purification. The average molecular weight of DOP0.1-S-1 was 10,000 Da and the range was around 12,000 -1,200 Da. The carbohydrate content of DOP0.1-S-1 was 100% and no protein was detected. The monosaccharide analysis showed that DOP0.1-S-1 was mostly composed of galactose. Methylation and NMR spectra analysis indicated that DOP0.1-S-1 was a 1,4-ß-galactan. Bioactivity test showed that DOP0.1-S-1 could promote the growth of B. thetaiotaomicron and B. ovatus and produce the short-chain fatty acids during the utilization of the polysaccharide.


Subject(s)
Bacteroides thetaiotaomicron/drug effects , Dioscorea/chemistry , Galactans/pharmacology , Gastrointestinal Microbiome/drug effects , Carbohydrate Sequence , Galactans/chemistry , Galactans/isolation & purification , Molecular Weight , Prebiotics , Rhizome/chemistry
11.
Int J Biol Macromol ; 128: 435-443, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30703422

ABSTRACT

Crataegus pinnatifida is widely used as functional food and traditional medicine in China for various applications. Polysaccharides may contribute to health benefits, such as modulating human gut microbiota (HGM). To investigate structure features of polysaccharides from this plant, fruits of C. pinnatifida were extracted with boiling water, yielding crude polysaccharides HAW. A novel polysaccharide, named HAW1-1, was pooled by DEAE Sepharose™ Fast Flow column and further purified by Sephacryl S-100 HR column. The molecular weight of HAW1-1 was 42.35 kDa. The carbohydrate content of HAW1-1 was 99.42% and no protein was detected. The monosaccharide analysis showed this polysaccharide was only composed of glucose. According to the partial acid hydrolysis, methylation analysis and NMR spectra, the backbone of HAW1-1 was consisted of 1,4-linked α-D-glucan and 1,4,6-linked α-D-glucan. The side chains were composed of 1,6-linked α-D-glucan and terminal-linked α-D-glucan. The bioactivity tests showed that HAW1-1 could promote the growth of three species of intestinal Bacteroides and produce short-chain fatty acids (SCFAs). The results suggested that HAW1-1 might be a potential prebiotic candidate to maintain intestinal homeostasis and improve human gut health.


Subject(s)
Crataegus/chemistry , Gastrointestinal Microbiome/drug effects , Glucans/chemistry , Glucans/pharmacology , Acetates/metabolism , Carbohydrate Sequence , Humans , Hydrolysis , Monosaccharides/analysis , Propionates/metabolism
12.
Exp Ther Med ; 16(3): 2087-2093, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30186444

ABSTRACT

The aim of the current study was to discuss and analyze computerized tomography (CT) features and clinicopathological characteristics of patients with Kimura disease in head and neck. CT and clinicopathological data of 12 patients with Kimura disease diagnosed between May 2011 and May 2015 were analyzed. The mean age was 43.9 years and the disease course varied from 1 week-20 years. The mean absolute value of eosinophil granulocytes was 1.95×109/l. Multiple nodules were detected in 4 patients with Kimura disease. Main symptoms included multiple enlarged lymph nodes in neck and submaxillary regions. CT imaging of nodular lesions revealed a clear boundary, with moderate to marked homogeneous enhancement. Diffuse mass lesions were observed in 6 patients with Kimura disease. Main symptoms included subcutaneous diffuse soft tissue mass in parotid gland and maxillofacial regions. CT imaging of diffuse mass revealed unclear boundaries, adjacent skin thickness and moderate heterogeneous enhancement. In some cases, the diffuse mass involved soft mass with unclear boundaries. Pathological symptoms of Kimura disease included infiltration of eosinophilia, lymphocytic proliferation, formation of lymphatic follicles and variable degrees of fibrosis and vascular proliferation. Diagnosis of Kimura disease in head and neck regions may be improved based on lesions with clear or unclear boundaries, homogeneous or heterogeneous enhancement, with or without lymphadenectasis and by the presence of peripheral blood eosinophilia. However, a final diagnosis relies on a pathological examination.

13.
Nanoscale Res Lett ; 11(1): 214, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27102903

ABSTRACT

Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

14.
Nanoscale Res Lett ; 10(1): 395, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26450619

ABSTRACT

Micro-sized polycrystalline silicon particles were used as anode materials of lithium-ion battery. The columbic efficiency of the first cycle reached a relatively high value of 91.8 % after prelithiation and increased to 99 % in the second cycle. Furthermore, columbic efficiency remained above 99 % for up to 280+ cycles. The excellent performances of the batteries were the results of the use of a proper binder to protect the electrode from cracking and the application of a suitable conductive agent to provide an efficient conductive channel. The good performance was also significantly attributed to the electrolyte in the packaging process.

15.
Nanoscale Res Lett ; 9(1): 661, 2014.
Article in English | MEDLINE | ID: mdl-25520603

ABSTRACT

An easy and low-cost method to transfer large-scale horizontally aligned Si nanowires onto a substrate is reported. Si nanowires prepared by metal-assisted chemical etching were assembled and anchored to fabricate multiwire photoconductive devices with standard Si technology. Scanning electron microscopy images showed highly aligned and successfully anchored Si nanowires. Current-voltage tests showed an approximately twofold change in conductivity between the devices in dark and under laser irradiation. Fully reversible light switching ON/OFF response was also achieved with an I ON/I OFF ratio of 230. Dynamic response measurement showed a fast switching feature with response and recovery times of 10.96 and 19.26 ms, respectively.

16.
Nanoscale Res Lett ; 8(1): 277, 2013 Jun 09.
Article in English | MEDLINE | ID: mdl-23758957

ABSTRACT

The enhanced room-temperature photoluminescence of porous Si nanowire arrays and its mechanism are investigated. Over 4 orders of magnitude enhancement of light intensity is observed by tuning their nanostructures and surface modification. It is concluded that the localized states related to Si-O bonds and self-trapped excitations in the nanoporous structures are attributed to the strong light emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...