Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
J Nutr Biochem ; : 109672, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823542

ABSTRACT

Hypothyroidism and subclinical hypothyroidism were both characterized by elevated levels of thyroid stimulating hormone (TSH), previous studies had found that high iodine or hyperlipidemia alone was associated with TSH level. However, their combined effects on TSH have not been elucidated. In this study, combination of high iodine and hyperlipidemia was established through the combined exposure of high water iodine and high fat diet in Wistar rats. The results showed that combined exposure of high iodine and high fat can induce higher TSH level. The mRNA and protein levels of sodium iodide transporters (NIS) and type 1 deiodinase (D1) in thyroid tissues, which were crucial genes in the synthesis of thyroid hormones, decreased remarkably in combined exposure group. Mechanistically, down-regulated lncRNA MALAT1 may regulate the expression of NIS by increasing miR-339-5p, and regulating D1 by increasing miR-224-5p. Then, the above findings were explored in subjects exposed to high water iodine and hyperlipidemia. The results indicated that in population combined with high iodine and hyperlipidemia, TSH level increased to higher level and lncRNA MALAT1-miR-339-5p-NIS axis was obviously activated. Collectively, this study found that combined exposure of high iodine and hyperlipidemia induced a higher level of TSH, and lncRNA MALAT1-miR-339-5p-NIS axis may play important role.

2.
Sci Total Environ ; : 173798, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844236

ABSTRACT

Trehalase gene is mainly expressed in the digestive circulatory system for regulating energy metabolism and chitin synthesis in insects, but it is significantly expressed in gill for immunomodulation in shrimp. However, its function in regulating immunity, particularly metal resistance in crustaceans has yet to be elucidated. In this study, one Tre2 gene (NdTre2) was isolated from Neocaridina denticulata sinensis. It could bind to Cd2+ and inhibit its toxicity. Spatiotemporal expression analysis showed that the expression of NdTre2 was highest in the gill and significantly reduced at 12 h after Cd2+ stimulation. The transcriptomic analysis of the gill after NdTre2 knockdown showed that the expression of genes synthetizing 20E was up-regulated and the increased 20E could further induce apoptosis by activating the intrinsic mitochondrial pathway, exogenous death receptor-ligand pathway, and MAPK pathway. In vitro, overexpressing NdTre2 enhanced the tolerance of E. coli in Cd2+ environment. In summary, these results indicate that NdTre2 plays an essential role in regulating immunity and chitin metabolism in N. denticulata sinensis.

3.
Front Plant Sci ; 15: 1396602, 2024.
Article in English | MEDLINE | ID: mdl-38845850

ABSTRACT

The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.

4.
Cancer Cell Int ; 24(1): 182, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790003

ABSTRACT

BACKGROUND: Metabolic reprogramming contributes to bladder cancer development. This study aimed to understand the role of SLC7A5 in bladder cancer. METHODS: We systematically analyzed the correlation between SLC7A5 and bladder cancer through various approaches, including bioinformatics, western blotting, cell cycle analysis, cell proliferation assays, and invasion experiments. We also investigated the immunological features within the tumor microenvironment (TME), encompassing cancer immune cycles, immune modulators, immune checkpoints, tumor-infiltrating immune cells (TIIC), T cell inflammation scores, and treatment responses. Additionally, for a comprehensive assessment of the expression patterns and immunological roles of SLC7A5, pan-cancer analysis was performed using cancer genomics datasets. RESULTS: SLC7A5 was associated with adverse prognosis in bladder cancer patients, activating the Wnt pathway and promoting bladder cancer cell cycle progression, proliferation, migration, and invasion. Based on the evidence that SLC7A5 positively correlated with immunomodulators, TIIC, the cancer immune cycle, immune checkpoint and T cell inflammation scores, we also found that SLC7A5 was associated with the inflammatory tumor immune microenvironment. EGFR-targeted therapy, cancer immunotherapy, and radiation therapy were effective for patients with high SLC7A5 expression in bladder cancer. Low SLC7A5 patients were, however, sensitive to targeted therapies and anti-angiogenic therapy, such as blocking ß-catenin network, PPAR-γ and FGFR3 signaling. Anti-SLC7A5 combined with cancer immunotherapy may have greater effectiveness than either therapy alone. Furthermore, we observed specific overexpression of SLC7A5 in TME of various cancers. CONCLUSION: SLC7A5 can predict therapeutic response to immunotherapy, radiotherapy and chemotherapy in bladder cancer patients. Targeting SLC7A5 in combination with immunotherapy may be a potentially appropriate treatment option.

5.
Int J Biol Macromol ; 270(Pt 1): 132206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735610

ABSTRACT

The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.


Subject(s)
Brassica napus , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plasmodiophorida , Brassica napus/parasitology , Brassica napus/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Plant Diseases/parasitology , Plant Diseases/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Multigene Family , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Genome, Plant , Intramolecular Transferases
6.
Plants (Basel) ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794432

ABSTRACT

Low-temperature stress (TS) limits maize (Zea mays L.) seed germination and agricultural production. Exposure to TS during germination inhibits radicle growth, triggering seedling emergence disorders. Here, we aimed to analyse the changes in gene expression in the radicles of maize seeds under TS by comparing Demeiya1 (DMY1) and Zhengdan958 (ZD958) (the main Northeast China cultivars) and exposing them to two temperatures: 15 °C (control) and 5 °C (TS). TS markedly decreased radicle growth as well as fresh and dry weights while increasing proline and malondialdehyde contents in both test varieties. Under TS treatment, the expression levels of 5301 and 4894 genes were significantly different in the radicles of DMY1 and ZD958, respectively, and 3005 differentially expressed genes coexisted in the radicles of both varieties. The phenylpropanoid biosynthesis pathway was implicated within the response to TS in maize radicles, and peroxidase may be an important indicator for assessing low-temperature tolerance during maize germination. Peroxidase-encoding genes could be important candidate genes for promoting low-temperature resistance in maize germinating radicles. We believe that this study enhances the knowledge of mechanisms of response and adaptation of the maize seed germination process to TS and provides a theoretical basis for efficiently assessing maize seed low-temperature tolerance and improving maize adversity germination performance.

7.
Plants (Basel) ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794443

ABSTRACT

Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan.

8.
Article in English | MEDLINE | ID: mdl-38587954

ABSTRACT

It is generally accepted that the impact of weather variation is gradually increasing in modern distribution networks with the integration of high-proportion photovoltaic (PV) power generation and weather-sensitive loads. This article analyzes power flow using a novel stochastic weather generator (SWG) based on statistical machine learning (SML). The proposed SML model, which incorporates generative adversarial networks (GANs), probability theory, and information theory, enables the generation and evaluation of simulated hourly weather data throughout the year. The GAN model captures various weather variation characteristics, including weather uncertainties, diurnal variations, and seasonal patterns. Compared to shallow learning models, the proposed deep learning model exhibits significant advantages in stochastic weather simulation. The simulated data generated by the proposed model closely resemble real data in terms of time-series regularity, integrity, and stochasticity. The SWG is applied to model PV power generation and weather-sensitive loads. Then, we actively conduct a power flow analysis (PFA) on a real distribution network in Guangdong, China, using simulated data for an entire year. The results provide evidence that the GAN-based SWG surpasses the shallow machine learning approach in terms of accuracy. The proposed model ensures accurate analysis of weather-related power flow and provides valuable insights for the analysis, planning, and design of distribution networks.

9.
BMC Cardiovasc Disord ; 24(1): 189, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561664

ABSTRACT

BACKGROUND: The Systemic Immune-Inflammation Index (SII), a novel marker of inflammation based on neutrophil, platelet, and lymphocyte counts, has demonstrated potential prognostic value in patients undergoing percutaneous coronary intervention (PCI). Our aim was to assess the correlation between the SII and major adverse cardiovascular events following percutaneous coronary intervention. METHODS: We searched PubMed, Web of Science, Embase, and The Cochrane Library from inception to November 20, 2023, for cohort studies investigating the association between SII and the occurrence of MACEs after PCI. Statistical analysis was performed using Revman 5.3, with risk ratios (RRs) and 95% confidence intervals (CIs) as relevant parameters. RESULTS: In our analysis, we incorporated a total of 8 studies involving 11,117 participants. Our findings revealed that a high SII is independently linked to a increased risk of MACEs in PCI patients (RR: 2.08,95%CI: 1.87-2.32, I2 = 42%, p < 0.00001). Additionally, we demonstrated the prognostic value of SII in all-cause mortality, heart failure, and non-fatal myocardial infarction. CONCLUSIONS: Elevated SII may serve as a potential predictor for subsequent occurrence of MACEs in patients undergoing PCI. TRIAL REGISTRATION: Our protocol was registered in PROSPERO (registration number: CRD42024499676).


Subject(s)
Cardiovascular System , Heart Failure , Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Inflammation/diagnosis , Inflammation/etiology , Heart Failure/etiology
10.
World J Orthop ; 15(4): 363-378, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38680671

ABSTRACT

BACKGROUND: Regular physical activity during childhood and adolescence is beneficial to bone development, as evidenced by the ability to increase bone density and peak bone mass by promoting bone formation. AIM: To investigate the effects of exercise on bone formation in growing mice and to investigate the underlying mechanisms. METHODS: 20 growing mice were randomly divided into two groups: Con group (control group, n = 10) and Ex group (treadmill exercise group, n = 10). Hematoxylin-eosin staining, immunohistochemistry, and micro-CT scanning were used to assess the bone formation-related indexes of the mouse femur. Bioinformatics analysis was used to find potential miRNAs targets of long non-coding RNA H19 (lncRNA H19). RT-qPCR and Western Blot were used to confirm potential miRNA target genes of lncRNA H19 and the role of lncRNA H19 in promoting osteogenic differentiation. RESULTS: Compared with the Con group, the expression of bone morphogenetic protein 2 was also significantly increased. The micro-CT results showed that 8 wk moderate-intensity treadmill exercise significantly increased bone mineral density, bone volume fraction, and the number of trabeculae, and decreased trabecular segregation in the femur of mice. Inhibition of lncRNA H19 significantly upregulated the expression of miR-149 and suppressed the expression of markers of osteogenic differentiation. In addition, knockdown of lncRNA H19 significantly downregulated the expression of autophagy markers, which is consistent with the results of autophagy-related protein changes detected in mouse femurs by immunofluorescence. CONCLUSION: Appropriate treadmill exercise can effectively stimulate bone formation and promote the increase of bone density and bone volume in growing mice, thus enhancing the peak bone mass of mice. The lncRNA H19/miR-149 axis plays an important regulatory role in osteogenic differentiation.

11.
Polymers (Basel) ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675091

ABSTRACT

A series of well-defined diblock copolymers, namely, 3,4-polyisoprene-block-syndiotactic-1,2-polybutadiene (3,4-PI-b-s-1,2-PBD), with a soft-hard block sequence were synthesized via an in situ sequential polymerization process using a robust iron-based catalytic system Fe(acac)3/(isocyanoimino) triptenylphosphorane (IITP)/AliBu3. This catalyst exhibits vigorous activity and temperature tolerance, achieving a polymerization activity of 5.41 × 106 g mol(Fe)-1 h-1 at 70 °C with a [IP]/[Fe] ratio of 15,000. Moreover, the quasi-living polymerization characteristics of the catalyst were verified through kinetic experiments. The first-stage polymerization of isoprene (IP) is performed at 30 °C to give a soft 3,4-PI block, and then a quantitative amount of 1,3-butadiene was added in situ to the quasi-living polymerization system to produce a second hard s-1,2-PBD. The s-1,2-PBD segments in block copolymers display a rodlike morphology contrasting with the spherulitic morphology characteristic of s-1,2-PBD homopolymers. The precise tunability of the length of the soft and hard chain segments of these novel elastic materials with the feed ratio of IP and BD, endowing them with outstanding mechanical properties and excellent dynamic mechanical properties, which are expected to be promising high-performance rubber materials.

12.
Cardiovasc Intervent Radiol ; 47(5): 592-603, 2024 May.
Article in English | MEDLINE | ID: mdl-38605220

ABSTRACT

PURPOSE: This study aims to evaluate the prognostic value of controlling nutritional status (CONUT) score in determining the prognosis of patients with hepatocellular carcinoma (HCC) treated with conventional transcatheter arterial chemoembolization (cTACE). METHODS: This study retrospectively analyzed 936 patients who underwent cTACE for HCC between January 2012 and December 2018, and divided them into two groups based on their CONUT score. To balance the bias in baseline characteristics, propensity score matched (PSM) analysis was conducted. The Kaplan-Meier method was used to establish a cumulative survival curve, and the log-rank test was employed to determine differences in overall survival (OS) and progression-free survival (PFS) among the CONUT score groups. Furthermore, the Cox proportional hazard model was employed to assess the correlation between CONUT score and OS and PFS, whereby hazard ratios (HRs) and 95% confidence intervals (95% CIs) were computed. RESULTS: Before PSM, the median OS for the low (≤ 3) and high (≥ 4) CONUT group (558 vs. 378 patients) was 21.7 and 15.6 months, respectively, and the median PFS was 5.7 and 5 months. Following PSM, both the low and high CONUT score groups comprised 142 patients. The low CONUT score group exhibited a significantly longer OS compared to the high CONUT score group, as determined by the log-rank test (median OS 22.2 vs. 17.0 months, P = 0.014). No significant association was observed between CONUT group and PFS (median PFS 6.4 vs. 4.7 months, log-rank test, P = 0.121). Cox proportional hazard regression analysis revealed that a CONUT score of ≥ 4 was an independent risk factor for OS in patients with HCC who underwent cTACE (HR = 1.361; 95% CI: 1.047-1.771; P = 0.022). These findings were consistent across most subgroup analyses. CONCLUSION: A high CONUT score has been found to be a prognostic factor for poorer OS in patients with HCC who underwent cTACE. LEVEL OF EVIDENCE: Level 3, Non-randomized controlled cohort.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Nutritional Status , Propensity Score , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/diagnostic imaging , Male , Female , Chemoembolization, Therapeutic/methods , Retrospective Studies , Middle Aged , Aged , Prognosis , Survival Rate
13.
Fitoterapia ; 175: 105974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663563

ABSTRACT

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.


Subject(s)
Honey , Liver Cirrhosis , Oligosaccharides , Animals , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Oligosaccharides/pharmacology , Oligosaccharides/isolation & purification , Oligosaccharides/chemistry , Male , Fabaceae/chemistry , Carbon Tetrachloride , Liver/drug effects , Liver/pathology , Molecular Structure , Oxidative Stress/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism
14.
Expert Opin Pharmacother ; 25(6): 641-654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660817

ABSTRACT

INTRODUCTION: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus involving multiple pathophysiologic mechanisms. In addition to hypoglycemic agents commonly used in diabetes, metabolism-related drugs, natural plant extracts, melatonin, exosomes, and rennin-angiotensin-aldosterone system are cardioprotective in DCM. However, there is a lack of systematic summarization of drugs for DCM. AREAS COVERED: In this review, the authors systematically summarize the most recent drugs used for the treatment of DCM and discusses them from the perspective of DCM pathophysiological mechanisms. EXPERT OPINION: We discuss DCM drugs from the perspective of the pathophysiological mechanisms of DCM, mainly including inflammation and metabolism. As a disease with multiple pathophysiological mechanisms, the combination of drugs may be more advantageous, and we have discussed some of the current studies on the combination of drugs.


Subject(s)
Diabetic Cardiomyopathies , Hypoglycemic Agents , Humans , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cardiotonic Agents/pharmacology , Drug Therapy, Combination , Cardiovascular Agents/therapeutic use , Plant Extracts/therapeutic use , Plant Extracts/pharmacology
15.
Plants (Basel) ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38592895

ABSTRACT

Dendrobium officinale Kimura et Migo (D. officinale) is one of the most important traditional Chinese medicinal herbs, celebrated for its abundant bioactive ingredients. This study demonstrated that the diurnal temperature difference (DIF) (T1: 13/13 °C, T2: 25/13 °C, and T3: 25/25 °C) was more favorable for high chlorophyll, increased polysaccharide, and total flavonoid contents compared to constant temperature treatments in D. officinale PLBs. The transcriptome analysis revealed 4251, 4404, and 4536 differentially expressed genes (DEGs) in three different comparisons (A: 25/13 °C vs. 13/13 °C, B: 13/13 °C vs. 25/25 °C, and C: 25/13 °C vs. 25/25 °C, respectively). The corresponding up-/down-regulated DEGs were 1562/2689, 2825/1579, and 2310/2226, respectively. GO and KEGG enrichment analyses of DEGs showed that the pathways of biosynthesis of secondary metabolites, carotenoid biosynthesis, and flavonoid biosynthesis were enriched in the top 20; further analysis of the sugar- and flavonol-metabolism pathways in D. officinale PLBs revealed that the DIF led to a differential gene expression in the enzymes linked to sugar metabolism, as well as to flavonol metabolism. Certain key metabolic genes related to ingredient accumulation were identified, including those involved in polysaccharide metabolism (SUS, SUT, HKL1, HGL, AMY1, and SS3) and flavonol (UGT73C and UGT73D) metabolism. Therefore, these findings indicated that these genes may play an important role in the regulatory network of the DIF in the functional metabolites of D. officinale PLBs. In a MapMan annotation of abiotic stress pathways, the DEGs with significant changes in their expression levels were mainly concentrated in the heat-stress pathways, including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs). In particular, the expression levels of HSP18.2, HSP70, and HSF1 were significantly increased under DIF treatment, which suggested that HSF1, HSP70 and HSP18.2 may respond to the DIF. In addition, they can be used as candidate genes to study the effect of the DIF on the PLBs of D. officinale. The results of our qPCR analysis are consistent with those of the transcriptome-expression analysis, indicating the reliability of the sequencing. The results of this study revealed the transcriptome mechanism of the DIF on the accumulation of the functional metabolic components of D. officinale. Furthermore, they also provide an important theoretical basis for improving the quality of D. officinale via the DIF in production.

16.
Org Lett ; 26(13): 2635-2640, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38526487

ABSTRACT

A synthetic method for the efficient preparation of partially hydrogenated benzo[f]cyclobuta[cd]cyclopenta[h]benzofurans and cyclopropa[c]chromen-3a(1H)-ols that relies on the gold(I)-catalyzed cascade cycloisomerization of 3-allyloxy-1,6-diynes is described.

18.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456625

ABSTRACT

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Subject(s)
Brassica napus , Brassica napus/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Genomics , Phenotype
19.
Plant Physiol Biochem ; 210: 108550, 2024 May.
Article in English | MEDLINE | ID: mdl-38555720

ABSTRACT

Extracellular ATP plays a key role in regulating plants stress responses. Here, we aimed to determine whether ATP can alleviate the glyphosate toxicity in maize seedlings under high temperature by regulating antioxidant responses. Foliar spraying with 100 µM glyphosate inhibited the growth of maize seedlings at room temperature (25 °C), leading to an increase in shikimic acid accumulation and oxidative stress (evaluated via lipid peroxidation, free proline, and H2O2 content) in the leaves, all of which were further exacerbated by high temperature (35 °C). The growth inhibition and oxidative stress caused by glyphosate were both alleviated by exogenous ATP. Moreover, the glyphosate-induced antioxidant enzyme activity and antioxidant accumulation were attenuated by high temperature, while ATP treatment reversed this inhibitory effect. Similarly, qPCR data showed that the relative expression levels of antioxidant enzyme-related genes (CAT1, GR1, and γ-ECS) in maize leaves were upregulated by ATP before exposure to GLY. Moreover, high temperature-enhanced GLY residue accumulation in maize leaves was reduced by ATP. ATP-induced detoxification was attenuated through NADPH oxidase (NOX) inhibition. Higher NOX activities and O2•- production were noted in ATP-treated maize leaves compared to controls prior to GLY treatment, indicating that the extracellular ATP-induced alleviation of GLY toxicity was closely associated with NOX-dependent reactive oxygen species signalling. The current findings present a new approach for reducing herbicide toxicity in crops exposed to high temperatures.


Subject(s)
Adenosine Triphosphate , Glycine , Glyphosate , Seedlings , Zea mays , Zea mays/drug effects , Zea mays/metabolism , Zea mays/genetics , Zea mays/growth & development , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/toxicity , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Adenosine Triphosphate/metabolism , Hot Temperature , Herbicides/toxicity , Herbicides/pharmacology , Oxidative Stress/drug effects , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Gene Expression Regulation, Plant/drug effects
20.
New Phytol ; 242(5): 2011-2025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519445

ABSTRACT

Grain size is a crucial agronomic trait that affects stable yield, appearance, milling quality, and domestication in rice. However, the molecular and genetic relationships among QTL genes (QTGs) underlying natural variation for grain size remain elusive. Here, we identified a novel QTG SGW5 (suppressor of gw5) by map-based cloning using an F2 segregation population by fixing same genotype of the master QTG GW5. SGW5 positively regulates grain width by influencing cell division and cell size in spikelet hulls. Two nearly isogenic lines exhibited a significant differential expression of SGW5 and a 12.2% increase in grain yield. Introducing the higher expression allele into the genetic background containing the lower expression allele resulted in increased grain width, while its knockout resulted in shorter grain hulls and dwarf plants. Moreover, a cis-element variation in the SGW5 promoter influenced its differential binding affinity for the WRKY53 transcription factor, causing the differential SGW5 expression, which ultimately leads to grain size variation. GW5 physically and genetically interacts with WRKY53 to suppress the expression of SGW5. These findings elucidated a new pathway for grain size regulation by the GW5-WRKY53-SGW5 module and provided a novel case for generally uncovering QTG interactions underlying the genetic diversity of an important trait in crops.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Quantitative Trait Loci , Oryza/genetics , Oryza/anatomy & histology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Edible Grain/genetics , Edible Grain/anatomy & histology , Edible Grain/growth & development , Genes, Plant , Promoter Regions, Genetic/genetics , Alleles , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/anatomy & histology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...