Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
2.
Methods Mol Biol ; 2782: 39-63, 2024.
Article in English | MEDLINE | ID: mdl-38622391

ABSTRACT

T cells are a heterogeneous group of cells that can be classified into different subtypes according to different classification methods. The body's immune system has a highly complex and effective regulatory network that allows for the relative stability of immune system function. Maintaining proper T cell homeostasis is essential for promoting protective immunity and limiting autoimmunity and tumor formation. Among the T cell family members, more and more T cell subsets have gradually been characterized. In this chapter, we summarize the functions of some key T cell subsets and their impact on immune homeostasis.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , T-Lymphocyte Subsets , Autoimmunity , Homeostasis
3.
Methods Mol Biol ; 2782: 167-173, 2024.
Article in English | MEDLINE | ID: mdl-38622401

ABSTRACT

Microglia and oligodendrocyte precursor cells (OPCs) are critical glia subsets in the central nervous system (CNS) and are actively engaged in a body of diseases, such as stroke, Alzheimer's disease, multiple sclerosis, etc. Microglia and OPC serve as compelling tools for the study of CNS diseases as well as the repair and damage of myelin sheath in vitro. In this protocol, we summarized a method which is capable of using the same batch of new-born mice to isolate and culture microglia and OPCs. It integrates the characteristics of practicality, convenience, and efficiency, providing a convenient, easy, and reliable technique for research.


Subject(s)
Microglia , Oligodendrocyte Precursor Cells , Mice , Animals , Cell Differentiation/physiology , Myelin Sheath , Central Nervous System , Oligodendroglia
4.
Front Plant Sci ; 15: 1274610, 2024.
Article in English | MEDLINE | ID: mdl-38516661

ABSTRACT

Although rice is one of the main sources of calories for most of the world, nearly 60% of rice is grown in soils that are low in phosphorus especially in Asia and Africa. Given the limitations of bioavailable inorganic phosphate (Pi) in soils, it is important to develop crops tolerant to low phosphate in order to boost food security. Due to the immobile nature of Pi, plants have developed complex molecular signalling pathways that allow them to discern changes in Pi concentrations in the environment and adapt their growth and development. Recently, in rice, it was shown that a specific serine-threonine kinase known as Phosphorus-starvation tolerance 1 (PSTOL1) is important for conferring low phosphate tolerance in rice. Nonetheless, knowledge about the mechanism underpinning PSTOL1 activity in conferring low Pi tolerance is very limited in rice. Post-translation modifications (PTMs) play an important role in plants in providing a conduit to detect changes in the environment and influence molecular signalling pathways to adapt growth and development. In recent years, the PTM SUMOylation has been shown to be critical for plant growth and development. It is known that plants experience hyperSUMOylation of target proteins during phosphate starvation. Here, we demonstrate that PSTOL1 is SUMOylated in planta, and this affects its phosphorylation activity. Furthermore, we also provide new evidence for the role of SUMOylation in regulating PSTOL1 activity in plant responses to Pi starvation in rice and Arabidopsis. Our data indicated that overexpression of the non-SUMOylatable version of OsPSTOL1 negatively impacts total root length and total root surface area of rice grown under low Pi. Interestingly, our data also showed that overexpression of OsPSTOL1 in a non-cereal species, Arabidopsis, also positively impacts overall plant growth under low Pi by modulating root development. Taken together our data provide new evidence for the role of PSTOL1 SUMOylation in mediating enhanced root development for tolerating phosphate-limiting conditions.

5.
Front Nutr ; 10: 1241580, 2023.
Article in English | MEDLINE | ID: mdl-37693241

ABSTRACT

In this paper, we study the effect of microbial fermentation on the nutrient composition and flavor of sweet potato slurry, different strains of Aspergillus niger, Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to ferment sweet potato slurry. After 48 h of fermentation with different strains (10% inoculation amount), we compared the effects of several strains on the nutritional and functional constituents (protein, soluble dietary fiber, organic acid, soluble sugar, total polyphenol, free amino acid, and sensory characteristics). The results demonstrated that the total sugar level of sweet potato slurry fell significantly after fermentation by various strains, indicating that these strains can utilize the nutritious components of sweet potato slurry for fermentation. The slurry's total protein and phenol concentrations increased significantly, and many strains demonstrated excellent fermentation performance. The pH of the slurry dropped from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 free amino acids, and the change in free amino acid content is closely correlated with the flavor of the sweet potato fermentation slurry. The gas chromatography-mass spectrometry results reveal that microbial fermentation can effectively increase the kinds and concentration of flavor components in sweet potato slurry, enhancing its flavor and flavor profile. The results demonstrated that Aspergillus niger fermentation of sweet potato slurry might greatly enhance protein and total phenolic content, which is crucial in enhancing nutrition. However, Bacillus coagulans fermentation can enhance the concentration of free amino acids in sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. After fermentation by Bacillus coagulans, the concentration of lactic acid and volatile flavor substances also achieved its highest level, which can considerably enhance its flavor. The above results showed that Aspergillus niger and Bacillus coagulans could be the ideal strains for sweet potato slurry fermentation.

6.
PLoS Biol ; 21(7): e3002199, 2023 07.
Article in English | MEDLINE | ID: mdl-37486903

ABSTRACT

Microglia-mediated neuroinflammation is involved in various neurological diseases, including ischemic stroke, but the endogenous mechanisms preventing unstrained inflammation is still unclear. The anti-inflammatory role of transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) in macrophages and microglia has previously been identified. However, the endogenous mechanisms that how NR4A1 restricts unstrained inflammation remain elusive. Here, we observed that NR4A1 is up-regulated in the cytoplasm of activated microglia and localizes to processing bodies (P-bodies). In addition, we found that cytoplasmic NR4A1 functions as an RNA-binding protein (RBP) that directly binds and destabilizes Tnf mRNA in an N6-methyladenosine (m6A)-dependent manner. Remarkably, conditional microglial deletion of Nr4a1 elevates Tnf expression and worsens outcomes in a mouse model of ischemic stroke, in which case NR4A1 expression is significantly induced in the cytoplasm of microglia. Thus, our study illustrates a novel mechanism that NR4A1 posttranscriptionally regulates Tnf expression in microglia and determines stroke outcomes.


Subject(s)
Ischemic Stroke , Stroke , Animals , Mice , Transcription Factors , Microglia , Inflammation , RNA, Messenger
7.
Neurochem Int ; 169: 105565, 2023 10.
Article in English | MEDLINE | ID: mdl-37385448

ABSTRACT

AIMS: Pyroptosis is a unique pro-inflammatory form of programmed cell death which plays a critical role in promoting the pathogenesis of multiple inflammatory and autoimmune diseases. However, the current drug that is capable of inhibition pyroptosis has not been translated successfully in the clinic, suggesting a requirement for drug screening in depth. METHODS: We screened more than 20,000 small molecules and found D359-0396 demonstrates a potent anti-pyroptosis and anti-inflammation effect in both mouse and human macrophage. In vivo, EAE (a mouse model of MS) and septic shock mouse model was used to investigate the protective effect of D359-0396. In vitro experiments we used LPS plus ATP/nigericin/MSU to induce pyroptosis in both mouse and human macrophage, and finally the anti-pyroptosis function of D359-0396 was assessed. RESULTS: Our findings show that D359-0396 is well-tolerated without remarkable disruption of homeostasis. Mechanistically, while D359-0396 is capable of inhibiting pyroptosis and IL-1ß release in macrophages, this process depends on the NLRP3-Casp1-GSDMD pathway rather than NF-κB, AIM2 or NLRC4 inflammasome signaling. Consistently, D359-0396 significantly suppresses the oligomerization of NLRP3, ASC, and the cleavage of GSDMD. In vivo, D359-0396 not only ameliorates the severity of EAE (a mouse model of MS), but also exhibits a better therapeutic effect than teriflunomide, the first-line drug of MS. Similarly, D359-0396 treatment also significantly protects mice from septic shock. CONCLUSION: Our study identified D359-0396 as a novel small-molecule with potential application in NLRP3-associated diseases.


Subject(s)
Inflammasomes , Shock, Septic , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Shock, Septic/chemically induced , Shock, Septic/drug therapy , NF-kappa B/metabolism , Signal Transduction , Disease Models, Animal
8.
Nat Commun ; 14(1): 1686, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973279

ABSTRACT

For nickel-based catalysts, in-situ formed nickel oxyhydroxide has been generally believed as the origin for anodic biomass electro-oxidations. However, rationally understanding the catalytic mechanism still remains challenging. In this work, we demonstrate that NiMn hydroxide as the anodic catalyst can enable methanol-to-formate electro-oxidation reaction (MOR) with a low cell-potential of 1.33/1.41 V at 10/100 mA cm-2, a Faradaic efficiency of nearly 100% and good durability in alkaline media, remarkably outperforming NiFe hydroxide. Based on a combined experimental and computational study, we propose a cyclic pathway that consists of reversible redox transitions of NiII-(OH)2/NiIII-OOH and a concomitant MOR. More importantly, it is proved that the NiIII-OOH provides combined active sites including NiIII and nearby electrophilic oxygen species, which work in a cooperative manner to promote either spontaneous or non-spontaneous MOR process. Such a bifunctional mechanism can well account for not only the highly selective formate formation but also the transient presence of NiIII-OOH. The different catalytic activities of NiMn and NiFe hydroxides can be attributed to their different oxidation behaviors. Thus, our work provides a clear and rational understanding of the overall MOR mechanism on nickel-based hydroxides, which is beneficial for advanced catalyst design.

9.
EMBO Rep ; 24(3): e56034, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36629012

ABSTRACT

Interleukin 22 (IL-22) has an important role in colorectal tumorigenesis and many colorectal diseases such as inflammatory bowel disease and certain infections. However, the regulation of IL-22 production in the intestinal system is still unclear. Here, we present evidence that butyrophilin-like protein 2 (BTNL2) is required for colorectal IL-22 production, and BTNL2 knockout mice show decreased colonic tumorigenesis and more severe colitis phenotypes than control mice due to defective production of IL-22. Mechanistically, BTNL2 acts on group 3 innate lymphoid cells (ILC3s), CD4+ T cells, and γδ T cells to promote the production of IL-22. Importantly, we find that a monoclonal antibody against BTNL2 attenuates colorectal tumorigenesis in mice and that the mBTNL2-Fc recombinant protein has a therapeutic effect in a dextran sulfate sodium (DSS)-induced colitis model. This study not only identifies a regulatory mechanism of IL-22 production in the colorectal system but also provides a potential therapeutic target for the treatment of human colorectal cancer and inflammatory bowel diseases.


Subject(s)
Colitis , Colorectal Neoplasms , Humans , Mice , Animals , Immunity, Innate , Lymphocytes , Carcinogenesis , Cell Transformation, Neoplastic , Mice, Inbred C57BL , Mice, Knockout , Disease Models, Animal , Butyrophilins , Interleukin-22
10.
Cell Rep ; 41(9): 111741, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36450257

ABSTRACT

Metabolic rewiring is essential for Th17 cells' functional identity to sense and interpret environmental cues. However, the environmental metabolic checkpoints with specific regulation of Th17 cells, manifesting potential therapeutic opportunities to autoimmune diseases, remain largely unknown. Here, by screening more than one hundred compounds derived from intestinal microbes or diet, we found that vitamin B5 (VB5) restrains Th17 cell differentiation as well as related autoimmune diseases such as experimental autoimmune encephalomyelitis and colitis. Mechanistically, VB5 is catabolized into coenzyme A (CoA) in a pantothenate kinase (PANK)-dependent manner, and in turn, CoA binds to pyruvate kinase isoform 2 (PKM2) to impede its phosphorylation and nuclear translocation, thus inhibiting glycolysis and STAT3 phosphorylation. In humans, reduced serum VB5 levels are found in both IBD and MS patients. Collectively, our study demonstrates a role of VB5 in Th17 cell metabolic reprograming, thus providing a potential therapeutic intervention for Th17 cell-associated autoimmune diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Pyruvate Kinase , Humans , Animals , Pantothenic Acid , Th17 Cells , Protein Isoforms , Coenzyme A
11.
Front Immunol ; 13: 893912, 2022.
Article in English | MEDLINE | ID: mdl-35774778

ABSTRACT

Gasdermin D (GSDMD) serves as a key executor to trigger pyroptosis and is emerging as an attractive checkpoint in host defense, inflammatory, autoimmune diseases, and many other systemic diseases. Although canonical and non-canonical inflammasome-mediated classic GSDMD cleavage, GSDMD-NT migration to cell membrane, GSDMD-NT oligomerization, and pore forming have been well recognized, a few unique features of GSDMD in specific condition beyond its classic function, including non-lytic function of GSDMD, the modification and regulating mechanism of GSDMD signaling have also come to great attention and played a crucial role in biological processes and diseases. In the current review, we emphasized the GSDMD protein expression, stabilization, modification, activation, pore formation, and repair during pyroptosis, especially the regulation and modification of GSDMD signaling, such as GSDMD complex in polyubiquitination and non-pyroptosis release of IL-1ß, ADP-riboxanation, NINJ1 in pore forming, GSDMD binding protein TRIM21, GSDMD succination, and Regulator-Rag-mTOR-ROS regulation of GSDMD. We also discussed the novel therapeutic strategies of targeting GSDMD and summarized recently identified inhibitors with great prospect.


Subject(s)
Biological Phenomena , Intracellular Signaling Peptides and Proteins , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis
12.
J Immunol ; 209(4): 820-828, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35906000

ABSTRACT

Pyroptosis is a key inflammatory form of cell death participating in the progression of many inflammatory diseases, such as experimental autoimmune encephalomyelitis (EAE) and sepsis. Identification of small molecules to inhibit pyroptosis is emerging as an attractive strategy. In this study, we performed a screening based on in silico docking of compounds on the reported Gasdermin D (GSDMD) three-dimensional structure and found C202-2729 demonstrated strong anti-inflammatory effects in both endotoxin shock and EAE mouse models. Oral administration of C202-2729 was capable of attenuating EAE disease severity significantly and has the comparable effects to teriflunomide, the first-line clinical drug of multiple sclerosis. We found C202-2729 remarkably suppressed macrophage and T cell-associated immune inflammation. Mechanistically, C202-2729 neither impact GSDMD cleavage nor the upstream inflammasome activation in mouse immortalized bone marrow-derived macrophages. However, C202-2729 exposure significantly repressed the IL-1ß secretion and cell pyroptosis. We found C202-2729 directly bonds to the N terminus of GSDMD and blocks the migration of the N-terminal GSDMD fragment to cell membrane, restraining the pore-forming and mature IL-1ß release. Collectively, our findings provide a new molecule with the potential for translational application in GSDMD-associated inflammatory diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Sepsis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Phosphate-Binding Proteins/metabolism , Pyroptosis , Sepsis/drug therapy
13.
Nat Commun ; 13(1): 2406, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504893

ABSTRACT

The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell-intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells. Mechanistically, dying cells release ß-glucosylceramide during inflammation, which serves as natural ligand for Mincle. Ligand engagement induces activation of the ASC-NLRP3 inflammasome, which leads to Caspase8-dependent IL-1ß production and consequentially TH17 cell proliferation via an autocrine regulatory loop. Chemical inhibition of ß-glucosylceramide synthesis greatly reduces inflammatory CD4+ T cells in the central nervous system and inhibits EAE progression in mice. Taken together, this study indicates that sensing of danger signals by Mincle on TH17 cells plays a critical role in promoting CNS inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Th17 Cells , Animals , Central Nervous System/metabolism , Glucosylceramides/metabolism , Inflammation/metabolism , Ligands , Mice
14.
Plant Cell ; 34(8): 2892-2906, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35567527

ABSTRACT

A key function of photoreceptor signaling is the coordinated regulation of a large number of genes to optimize plant growth and development. The basic helix loop helix (bHLH) transcription factor MYC2 is crucial for regulating gene expression in Arabidopsis thaliana during development in blue light. Here we demonstrate that blue light induces the SUMOylation of MYC2. Non-SUMOylatable MYC2 is less effective in suppressing blue light-mediated photomorphogenesis than wild-type (WT) MYC2. MYC2 interacts physically with the SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2. Blue light exposure promotes the degradation of SPF1 and SPF2 and enhances the SUMOylation of MYC2. Phenotypic analysis revealed that SPF1/SPF2 function redundantly as positive regulators of blue light-mediated photomorphogenesis. Our data demonstrate that SUMO conjugation does not affect the dimerization of MYC transcription factors but modulates the interaction of MYC2 with its cognate DNA cis-element and with the ubiquitin ligase Plant U-box 10 (PUB10). Finally, we show that non-SUMOylatable MYC2 is less stable and interacts more strongly with PUB10 than the WT. Taken together, we conclude that SUMO functions as a counterpoint to the ubiquitin-mediated degradation of MYC2, thereby enhancing its function in blue light signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Seedlings/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitins/genetics
15.
Nat Commun ; 13(1): 231, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017553

ABSTRACT

Therapeutic blockade of the immune checkpoint proteins programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has transformed cancer treatment. However, the overall response rate to these treatments is low, suggesting that immune checkpoint activation is not the only mechanism leading to dysfunctional anti-tumour immunity. Here we show that butyrophilin-like protein 2 (BTNL2) is a potent suppressor of the anti-tumour immune response. Antibody-mediated blockade of BTNL2 attenuates tumour progression in multiple in vivo murine tumour models, resulting in prolonged survival of tumour-bearing mice. Mechanistically, BTNL2 interacts with local γδ T cell populations to promote IL-17A production in the tumour microenvironment. Inhibition of BTNL2 reduces the number of tumour-infiltrating IL-17A-producing γδ T cells and myeloid-derived suppressor cells, while facilitating cytotoxic CD8+ T cell accumulation. Furthermore, we find high BTNL2 expression in several human tumour samples from highly prevalent cancer types, which negatively correlates with overall patient survival. Thus, our results suggest that BTNL2 is a negative regulator of anti-tumour immunity and a potential target for cancer immunotherapy.


Subject(s)
Butyrophilins/genetics , Butyrophilins/metabolism , Interleukin-17/metabolism , T-Lymphocytes/metabolism , Tumor Escape/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen , Female , Gene Expression , HEK293 Cells , Humans , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neoplasms , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment
16.
Handb Exp Pharmacol ; 276: 213-237, 2022.
Article in English | MEDLINE | ID: mdl-34761292

ABSTRACT

Toll-like receptors (TLRs) comprise a group of transmembrane proteins with crucial roles in pathogen recognition, immune responses, and signal transduction. This family represented the first line of immune homeostasis in an evolutionarily conserved manner. Extensive researches in the past two decades had emphasized their structural and functional characteristics under both healthy and pathological conditions. In this review, we summarized the current understanding of TLR signaling in the central nervous system (CNS), which had been viewed as a previously "immune-privileged" but now "immune-specialized" area, with major implications for further investigation of pathological nature as well as potential therapeutic manipulation of TLR signaling in various neurological disorders.


Subject(s)
Signal Transduction , Toll-Like Receptors , Brain/metabolism , Central Nervous System/metabolism , Humans , Immunity, Innate , Toll-Like Receptors/metabolism
17.
Front Immunol ; 13: 1077335, 2022.
Article in English | MEDLINE | ID: mdl-36776399

ABSTRACT

Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Central Nervous System , Central Nervous System Diseases/drug therapy , Fungi , Inflammation
18.
iScience ; 24(9): 103047, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34553133

ABSTRACT

Vascular smooth muscle cells (VSMCs) have been widely recognized as key players in regulating blood-brain barrier (BBB) function, and their roles are unclear in ischemic stroke. Myosin phosphatase target subunit 1 (MYPT1) is essential for VSMC contraction and maintaining healthy vasculature. We generated VSMC-specific MYPT1 knockout (MYPT1SMKO) mice and cultured VSMCs infected with Lv-shMYPT1 to explore phenotypic switching of VSMCs and the accompanied impacts on BBB integrity. We found that MYPT1 deficiency induced phenotypic switching of synthetic VSMCs, which aggravated BBB disruption. Proteomic analysis identified evolutionarily conserved signaling intermediates in Toll pathways (ECSIT) as a downstream molecule that promotes activation of synthetic VSMCs and contributed to IL-6 expression. Knocking down ECSIT rescued phenotypic switching of VSMCs and BBB disruption. Additionally, inhibition of IL-6 decreased BBB permeability. These findings reveal that MYPT1 deficiency activated phenotypic switching of synthetic VSMCs and induced BBB disruption through ECSIT-IL-6 signaling after ischemic stroke.

19.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301894

ABSTRACT

Opportunistic fungal infections have become one of the leading causes of death among immunocompromised patients, resulting in an estimated 1.5 million deaths each year worldwide. The molecular mechanisms that promote host defense against fungal infections remain elusive. Here, we find that Myosin IF (MYO1F), an unconventional myosin, promotes the expression of genes that are critical for antifungal innate immune signaling and proinflammatory responses. Mechanistically, MYO1F is required for dectin-induced α-tubulin acetylation, acting as an adaptor that recruits both the adaptor AP2A1 and α-tubulin N-acetyltransferase 1 to α-tubulin; in turn, these events control the membrane-to-cytoplasm trafficking of spleen tyrosine kinase and caspase recruitment domain-containing protein 9 Myo1f-deficient mice are more susceptible than their wild-type counterparts to the lethal sequelae of systemic infection with Candida albicans Notably, administration of Sirt2 deacetylase inhibitors, namely AGK2, AK-1, or AK-7, significantly increases the dectin-induced expression of proinflammatory genes in mouse bone marrow-derived macrophages and microglia, thereby protecting mice from both systemic and central nervous system C. albicans infections. AGK2 also promotes proinflammatory gene expression in human peripheral blood mononuclear cells after Dectin stimulation. Taken together, our findings describe a key role for MYO1F in promoting antifungal immunity by regulating the acetylation of α-tubulin and microtubules, and our findings suggest that Sirt2 deacetylase inhibitors may be developed as potential drugs for the treatment of fungal infections.


Subject(s)
Candida albicans/physiology , Candidiasis/immunology , Immunity, Innate/immunology , Leukocytes, Mononuclear/immunology , Microtubules/immunology , Myosin Type I/metabolism , Myosin Type I/physiology , Acetylation , Animals , Antifungal Agents/pharmacology , Candidiasis/drug therapy , Candidiasis/metabolism , Candidiasis/microbiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubules/drug effects , Microtubules/metabolism , Microtubules/microbiology , Myosin Type I/genetics , Signal Transduction
20.
J Immunol ; 206(10): 2353-2365, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33941656

ABSTRACT

IL-17A plays an essential role in the pathogenesis of many autoimmune diseases, including psoriasis and multiple sclerosis. Act1 is a critical adaptor in the IL-17A signaling pathway. In this study, we report that an anti-sense long noncoding RNA, TRAF3IP2-AS1, regulates Act1 expression and IL-17A signaling by recruiting SRSF10, which downregulates the expression of IRF1, a transcriptional factor of Act1. Interestingly, we found that a psoriasis-susceptible variant of TRAF3IP2-AS1 A4165G (rs13210247) is a gain-of-function mutant. Furthermore, we identified a mouse gene E130307A14-Rik that is homologous to TRAF3IP2-AS1 and has a similar ability to regulate Act1 expression and IL-17A signaling. Importantly, treatment with lentiviruses expressing E130307A14-Rik or SRSF10 yielded therapeutic effects in mouse models of psoriasis and experimental autoimmune encephalomyelitis. These findings suggest that TRAF3IP2-AS1 and/or SRSF10 may represent attractive therapeutic targets in the treatment of IL-17-related autoimmune diseases, such as psoriasis and multiple sclerosis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interferon Regulatory Factor-1/metabolism , Interleukin-17/metabolism , Psoriasis/metabolism , RNA, Long Noncoding/metabolism , RNA/metabolism , Repressor Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Signal Transduction/genetics , Animals , Cell Cycle Proteins/genetics , Gene Knockout Techniques , HaCaT Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA/genetics , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Serine-Arginine Splicing Factors/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...