Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(8): e2105892, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34898014

ABSTRACT

Atomically dispersed iron embedded carbon is a promising bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), but its exposed iron sites must be increased. Herein, the authors propose a double steric hindrance strategy by using zeolitic imidazolate frameworks-8 as the first barrier skeleton and encapsulated phenylboronic acid as the second space obstruction to realize densely exposed atomic iron sites. Prepared PA@Z8-FeNC has the highest iron content (5.49 wt%) among reported transition-metal-based single-atom oxygen catalysts. Meanwhile, its concave surfaces, hollow structures, and hierarchical pores enable the high utilization rate of iron sites to 88.5 ± 4.5% and exposed active site density to 5.2 ± 0.3 × 1020 sites g-1 . Resultantly, PA@Z8-FeNC exhibits superior activity and stability to commercial Pt/C and IrO2 for the ORR and OER in half-cells and zinc-air flow batteries. This provides insight for developing densely and accessibly active sites in single-atom catalysts.

2.
ACS Appl Mater Interfaces ; 13(48): 57638-57645, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34817977

ABSTRACT

Polycrystalline BiCuSeO is considered as a promising thermoelectric material due to its intrinsically low thermal conductivity and moderate Seebeck coefficient. However, its low electrical conductivity and coupled electron-phonon transport properties restrict the further improvement of the thermoelectric performance. In this work, Pb and Yb dopants are incorporated into BiCuSeO to substitute for Bi sites via ball milling and high-pressure and high-temperature sintering, leading to a synergistic optimization of the electron and phonon transport and improved thermoelectric performance. The carrier concentration exhibits an enhancement with increasing Pb&Yb co-doping contents. Meanwhile, the decreased carrier mobility is suppressed appropriately by coordinating with the interplay of Pb and Yb dopants on the electronic structure. Besides, Pb&Yb co-doping combined with high-pressure and high-temperature sintering introduces abundant grain boundaries, dislocations, and point defects to effectively decrease the lattice thermal conductivity by scattering phonons in a broad frequency range. Coupled with the synergistic optimization of the electrical and thermal properties, a maximum zT of 1.2 is achieved in Bi0.88Pb0.06Yb0.06CuSeO at 850 K, which significantly outperforms the majority of oxygen-containing thermoelectric materials. Our study suggests that dual doping of bivalent ions and rare-earth elements at Bi sites is an effective strategy for improving the thermoelectric performance of BiCuSeO.

3.
ACS Appl Mater Interfaces ; 13(11): 13400-13409, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33715348

ABSTRACT

Improvements in the thermoelectric performance of n-type Bi2Te3 materials to more closely match their p-type counterparts are critical to promote the continued development of bismuth telluride thermoelectric devices. Here the unconventional heteroatom dopant, niobium, has been employed as a donor in Bi2Te3. Nb substitutes for Bi in the rhombohedral Bi2Te3 structure and exhibits multiple roles in its modulation of electrical transport and defect-induced phonon scattering. The carrier concentration is significantly increased as electrons are afforded by aliovalent doping and formation of vacancies on the Te sites. In addition, incorporation of Nb in the pseudoternary Bi2-xNbxTe3-δ system increases the effective mass, m*, which is consistent with cases of "conventional" elemental doping in Bi2Te3. Lastly, inclusion of Nb induces both point and extended defects (tellurium vacancies and dislocations, respectively), enhancing phonon scattering and reducing the thermal conductivity. As a result, an optimum zT of 0.94 was achieved in n-type Bi0.92Nb0.08Te3 at 505 K, which is dramatically higher than an equivalent undoped Bi2Te3 sample. This study suggests not only that is Nb an exciting and novel electron dopant for the Bi2Te3 system but also that unconventional dopants might be utilized with similar effects in other chalcogenide thermoelectrics.

4.
Angew Chem Int Ed Engl ; 59(9): 3455-3459, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-31808988

ABSTRACT

The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single-crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8-rings), AEL (10-rings), AFI (12-rings), and -CLO (20-rings) topologies, ranging from small to extra-large pores, were synthesized. These materials show exceptional properties, including small crystallites (30-150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time-dependent study revealed a non-classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...