Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(23): 10060-10071, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38709895

ABSTRACT

Atmospheric particles play critical roles in climate. However, significant knowledge gaps remain regarding the vertically resolved organic molecular-level composition of atmospheric particles due to aloft sampling challenges. To address this, we use a tethered balloon system at the Southern Great Plains Observatory and high-resolution mass spectrometry to, respectively, collect and characterize organic molecular formulas (MF) in the ground level and aloft (up to 750 m) samples. We show that organic MF uniquely detected aloft were dominated by organonitrates (139 MF; 54% of all uniquely detected aloft MF). Organonitrates that were uniquely detected aloft featured elevated O/C ratios (0.73 ± 0.23) compared to aloft organonitrates that were commonly observed at the ground level (0.63 ± 0.22). Unique aloft organic molecular composition was positively associated with increased cloud coverage, increased aloft relative humidity (∼40% increase compared to ground level), and decreased vertical wind variance. Furthermore, 29% of extremely low volatility organic compounds in the aloft sample were truly unique to the aloft sample compared to the ground level, emphasizing potential oligomer formation at higher altitudes. Overall, this study highlights the importance of considering vertically resolved organic molecular composition (particularly for organonitrates) and hypothesizes that aqueous phase transformations and vertical wind variance may be key variables affecting the molecular composition of aloft organic aerosol.


Subject(s)
Mass Spectrometry , Environmental Monitoring , Atmosphere/chemistry , Aerosols , Air Pollutants/analysis
2.
Plants (Basel) ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836132

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factor family is the second-largest transcription factor family in plants. Members of this family are involved in the processes of growth and development, secondary metabolic biosynthesis, signal transduction, and plant resistance. Loropetalum chinense var. rubrum is a critical woody plant with higher ornamental and economic values, which has been used as ornamental architecture and traditional Chinese herbal medicine plants. However, the bHLH transcription factors in Loropetalum chinense var. rubrum (L. chinense var. rubrum) have not yet been systematically demonstrated, and their role in the biosynthesis of anthocyanin is still unclear. Here, we identified 165 potential LcbHLHs genes by using two methods, and they were unequally distributed on chromosomes 1 to 12 of the genome of L. chinense var. rubrum. Based on an evolutionary comparison with proteins from Arabidopsis and Oryza sativa, these bHLH proteins were categorized into 21 subfamilies. Most LcbHLHs in a particular subfamily had similar gene structures and conserved motifs. The Gene Ontology annotation and Cis-elements predicted that LcbHLHs had many molecular functions and were involved in processes of plant growth, including the biosynthesis of flavonoids and anthocyanins. Transcriptomic analysis revealed different expression patterns among different tissues and cultivars of L. chinense var. rubrum. Many LcbHLHs were expressed in the leaves, and only a few genes were highly expressed in the flowers. Six LcbHLHs candidate genes were identified by bioinformatics analysis and expression analysis. Further Real-time quantitative PCR analysis and protein interaction network analysis showed that LcbHLH156, which is one of the candidate proteins belonging to the IIIf subfamily, could interact with proteins related to anthocyanin synthesis. Therefore, LcbHLH156 was transiently expressed in L. chinense var. rubrum to verify its function in regulating anthocyanin synthesis. Compared with the control group, red pigment accumulation appeared at the wound after injection, and the total anthocyanin content increased at the wound of leaves. These results lay a foundation for the research of the regulation mechanism of leaf colors in L. chinense var. rubrum and also provide a basis for the function of the LcbHLH family.

3.
Sci Total Environ ; 904: 166582, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37634734

ABSTRACT

Aerosol vertical distribution plays a crucial role in cloud development and thus precipitation since both aerosol indirect and semi-direct effects significantly depend on the relative position of aerosol layer in reference to cloud, but its precise influence on cloud remains unclear. In this study, we integrated multi-year Raman Lidar measurements of aerosol vertical profiles from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) facility with available Value-Added Products of cloud features to characterize aerosol vertical distributions and their impacts on warm clouds over the continental and marine ARM atmospheric observatories, i.e., Southern Great Plains (SGP) and Eastern North Atlantic (ENA). A unimodal seasonal distribution of aerosol optical depths (AODs) with a peak in summer is found at upper boundary layer over SGP, while a bimodal distribution is observed at ENA for the AODs at lower levels with a major winter-spring maximum. The diurnal mean of upper-level AOD at SGP shows a maximum in the early evening. According to the relative positions of aerosol layers to clouds we further identify three primary types of aerosol vertical distribution, including Random, Decreasing, and Bottom. It is found that the impacts of aerosols on cloud may or may not vary with aerosol vertical distribution depending on environmental conditions, as reflected by the wide variations of the relations between AOD and cloud properties. For example, as AOD increases, the liquid water paths (LWPs) tend to be reduced at SGP but enhanced at ENA. The relations of cloud droplet effective radius with AOD largely depend on aerosol vertical distributions, particularly showing positive values in the Random type under low-LWP condition (<50 g m-2). The distinct features of aerosol-cloud interactions in relation to aerosol vertical distribution are likely attributed to the continental-marine contrast in thermodynamic environments and aerosol conditions between SGP and ENA.

4.
Metabolites ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37110123

ABSTRACT

This study employed a combination of ultraviolet spectrophotometry, LC-ESI-MS/MS system, and RNA-sequencing technology; the extracts and isolation of total RNA from the red and yellow leaf strains of red maple (Acer rubrum L.) at different developmental stages were subjected to an intercomparison of the dynamic content of chlorophyll and total anthocyanin, flavonoid metabolite fingerprinting, and gene expression. The metabonomic results indicated that one hundred and ninety-two flavonoids were identified, which could be classified into eight categories in the red maple leaves. Among them, 39% and 19% were flavones and flavonols, respectively. The metabolomic analysis identified 23, 32, 24, 24, 38, and 41 DAMs in the AR1018r vs. AR1031r comparison, the AR1018r vs. AR1119r comparison, the AR1031r vs. AR1119r comparison, the AR1018y vs. AR1031y comparison, the AR1018y vs. AR1119y comparison, and the AR1031y vs. AR1119y comparison, respectively. In total, 6003 and 8888 DEGs were identified in AR1018r vs. AR1031r comparison and in the AR1018y vs. AR1031y comparison, respectively. The GO and KEGG analyses showed that the DEGs were mainly involved in plant hormone signal transduction, flavonoid biosynthesis, and other metabolite metabolic processes. The comprehensive analysis revealed that caffeoyl-CoA 3-O-methyltransferase (Cluster-28704.45358 and Cluster-28704.50421) was up-regulated in the red strain but down-regulated in the yellow strain, while Peonidin 3-O-glucoside chloride and Pelargonidin 3-O-beta-D-glucoside were up-regulated in both the red and yellow strains. By successfully integrating the analyses on the behavior of pigment accumulation, dynamics of flavonoids, and differentially expressed genes with omics tools, the regulation mechanisms underlying leaf coloring in red maple at the transcriptomic and metabolomic levels were demonstrated, and the results provide valuable information for further research on gene function in red maple.

5.
BMC Plant Biol ; 23(1): 133, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36882694

ABSTRACT

BACKGROUND: Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours: GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics. RESULTS: We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves. CONCLUSION: This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.


Subject(s)
Anthocyanins , Transcriptome , Chlorophyll A , Metabolome , Metabolomics
6.
Environ Sci Technol ; 57(14): 5821-5830, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36971313

ABSTRACT

Arctic aerosols play a significant role in aerosol-radiation and aerosol-cloud interactions, but ground-based measurements are insufficient to explain the interaction of aerosols and clouds in a vertically stratified Arctic atmosphere. This study shows the vertical variability of a size resolved aerosol composition via a tethered balloon system at Oliktok Point, Alaska, at different cloud layers for two representative case studies (background aerosol and polluted conditions). Multimodal microspectroscopy analysis during the background case reveals a broadening of chemically specific size distribution above the cloud top with a high abundance of sulfate particles and core-shell morphology, suggesting possible cloud processing of aerosols. The polluted case also indicates broadening of aerosol size distribution at the upper layer within the clouds with the dominance of carbonaceous particles, which suggests that the carbonaceous particles play a potential role in modulating Arctic cloud properties.


Subject(s)
Atmosphere , Atmosphere/chemistry , Aerosols , Arctic Regions , Alaska
7.
PeerJ ; 11: e14834, 2023.
Article in English | MEDLINE | ID: mdl-36815976

ABSTRACT

This research mainly focused on the leaf color change and photosystem function differentiation between Loropetalum chinense and its variety L. chinense var. rubrum under heat stress, which were tightly concerned about their ornamental traits and growth. L. chinense 'Xiangnong Xiangyun' (X) and L. chinense var. rubrum 'Xiangnong Fendai' (F) and L. chinense var. rubrum 'Hei Zhenzhu' (H) were chosen to be experimented on to investigate whether leaf color morphology and pigment composition could influence the adaptability of plants to high temperature in order to select foliage plants which posses stable leaf color and better adaptability for hot regions. The plants were cultured in hot environment (40 °C/33 °C, day/night) and normal environment (25 °C/18 °C, day/night). Phenotype and anatomic observation of three cultivars were made and leaf color indices and pigment contents were measured. During the experiment, H and F gradually turned green, total anthocyanins contents significantly decreased in them, however, chlorophyll b contents increased in all three cultivars. In addition, the initial fluorescence (Fo) decreased in X, while increased in H and F. For the maximum fluorescence (Fm) and maximum photochemical efficiency of PSII (Fv/Fm), they only increased in H and decreased in both F and X. The non-photochemical chlorophyll fluorescence quenching (NPQ) also increased in H and decreased in F. For X, it increased at first then gradually decreased. The coefficient of photochemical quenching all increased at first then gradually decreased. Correlation analysis between showed that there was relatively strong connection between anthocyanins, flavonoids and chlorophyll fluorescence parameters, especially NPQ, proved anthocyanins and flavonoids might not only involved in enriching leaf color, but also interfered with the protection of photosystem. Generally speaking, we found higher anthocyanin and flavonoids content level not only dramatically enriched the leaf color of L. chinense var. rubrum cultivars, but also offered more potential antioxidant to keep their normal growth when encountered heat stress.


Subject(s)
Anthocyanins , Photosynthesis , Anthocyanins/analysis , Chlorophyll/analysis , Plant Leaves/chemistry , Heat-Shock Response
8.
Front Plant Sci ; 13: 1000160, 2022.
Article in English | MEDLINE | ID: mdl-36457526

ABSTRACT

Introduction: Loropetalum chinense var. rubrum blooms 2-3 times a year, among which the autumn flowering period has great potential for exploitation, but the number of flowers in the autumn flowering period is much smaller than that in the spring flowering period. Methods: Using 'Hei Zhenzhu' and 'Xiangnong Xiangyun' as experimental materials, the winter growth environment of L. chinense var. rubrum in Changsha, Hunan Province was simulated by setting a low temperature of 6-10°C in an artificial climate chamber to investigate the effect of winter low temperature on the flowering traits and related gene expression of L. chinense var. rubrum. Results: The results showed that after 45 days of low temperature culture and a subsequent period of 25°C greenhouse culture, flower buds and flowers started to appear on days 24 and 33 of 25°C greenhouse culture for 'Hei Zhenzhu', and flower buds and flowers started to appear on days 21 and 33 of 25°C greenhouse culture for 'Xiangnong Xiangyun'. The absolute growth rate of buds showed a 'Up-Down' pattern during the 7-28 days of low temperature culture; the chlorophyll fluorescence decay rate (Rfd) of both materials showed a 'Down-Up-Down' pattern during this period. The non-photochemical quenching coefficient (NPQ) showed the same trend as Rfd, and the photochemical quenching coefficient (QP) fluctuated above and below 0.05. The expression of AP1 and FT similar genes of L. chinense var. rubrum gradually increased after the beginning of low temperature culture, reaching the highest expression on day 14 and day 28, respectively, and the expression of both in the experimental group was higher than that in the control group. The expressions of FLC, SVP and TFL1 similar genes all decreased gradually with low temperature culture, among which the expressions of FLC similar genes and TFL1 similar genes in the experimental group were extremely significantly lower than those in the control group; in the experimental group, the expressions of GA3 similar genes were all extremely significantly higher than those in the control group, and the expressions all increased with the increase of low temperature culture time. Discussion: We found that the high expression of gibberellin genes may play an important role in the process of low temperature promotion of L. chinense var. rubrum flowering, and in the future, it may be possible to regulate L. chinense var. rubrum flowering by simply spraying exogenous gibberellin instead of the promotion effect of low temperature.

9.
PeerJ ; 10: e13406, 2022.
Article in English | MEDLINE | ID: mdl-35573179

ABSTRACT

"Pruning" is a simple and efficient way to control the flowering period, but it is rarely used in perennial woody ornamental plants. In this paper, Loropetalum chinense var. rubrum was pruned in different degrees, and the relationship between pruning intensity and flowering number, and flowering time and chlorophyll fluorescence parameters were compared. After statistics, it was found that pruning could advance blossoms of L. chinense var. rubrum; also, light and heavy cutting could both obtain a larger number of flowers. In addition, through correlation analysis, it was found that during the flowering period, the Rfd parameter of the unpruned treatment had a very significant positive correlation with the number of flowers FN, which was 0.81. In other pruning treatment groups, Rfd and FN also presented a certain positive correlation, indicating that the Rfd parameter can be used to predict the number of flowers during the flowering process of L. chinense var. rubrum. The research results provided a new idea for the regulation of the flowering period of L. chinense var. rubrum and other woody ornamental plants and laid the foundation for the diversified application of L. chinense var. rubrum.


Subject(s)
Hamamelidaceae , Plants , Fluorescence , Flowers/physiology , Chlorophyll
10.
Opt Express ; 23(11): 14095-107, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072778

ABSTRACT

This paper developed a new retrieval framework of external mixing of the dust and non-dust aerosol to predict the lidar ratio of the external mixing aerosols and to separate the contributions of non-spherical aerosols by using different depolarization ratios among dust, sea salt, smoke, and polluted aerosols. The detailed sensitivity tests and case study with the new method showed that reliable dust information could be retrieved even without prior information about the non-dust aerosol types. This new method is suitable for global dust retrievals with satellite observations, which is critical for better understanding global dust transportation and for model improvements.


Subject(s)
Aerosols/analysis , Dust/analysis , Light , Computer Simulation , Environmental Monitoring/methods , Infrared Rays , Satellite Communications , Scattering, Radiation , Sodium Chloride/analysis
11.
Science ; 333(6038): 77-81, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21719676

ABSTRACT

Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

SELECTION OF CITATIONS
SEARCH DETAIL
...