Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 5023, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24846704

ABSTRACT

A technique for detecting brain injury at the bedside has great clinical value, but conventional imaging techniques (such as computed tomography [CT] and magnetic resonance imaging) are impractical. In this study, a novel method-the symmetrical channel electroencephalogram (EEG) signal analysis-was developed for this purpose. The study population consisted of 45 traumatic brain injury patients and 10 healthy controls. EEG signals in resting and stimulus states were acquired, and approximate entropy (ApEn) and slow-wave coefficient were extracted to calculate the ratio values of ApEn and SWC for injured and uninjured areas. Statistical analyses showed that the ratio values for both ApEn and SWC between injured and uninjured brain areas differed significantly (P<0.05) for both resting and name call stimulus states. A set of criteria (range of ratio values) to determine whether a brain area is injured or uninjured was proposed and its reliability was verified by statistical analyses and CT images.


Subject(s)
Brain Injuries/pathology , Brain Mapping/methods , Brain/physiology , Electroencephalography/methods , Entropy , Signal Processing, Computer-Assisted , Adult , Brain Mapping/instrumentation , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Pilot Projects , Prognosis , Young Adult
2.
Article in English | MEDLINE | ID: mdl-23596413

ABSTRACT

The present study investigates a potential computational role of dynamical electrical synapses in neural information process. Compared with chemical synapses, electrical synapses are more efficient in modulating the concerted activity of neurons. Based on the experimental data, we propose a phenomenological model for short-term facilitation of electrical synapses. The model satisfactorily reproduces the phenomenon that the neuronal correlation increases although the neuronal firing rates attenuate during the luminance adaptation. We explore how the stimulus information is encoded in parallel by firing rates and correlated activity of neurons, and find that dynamical electrical synapses mediate a transition from the firing rate code to the correlation one during the luminance adaptation. The latter encodes the stimulus information by using the concerted, but lower neuronal firing rate, and hence is economically more efficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...