Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 167: 107663, 2023 12.
Article in English | MEDLINE | ID: mdl-37931526

ABSTRACT

Cancer recurrence is one of the primary causes of patient mortality following treatment, indicating increased aggressiveness of cancer cells and difficulties in achieving a cure. A critical step to improve patients' survival is accurately predicting recurrence status and giving appropriate treatment. Whole Slide Images (WSIs) are a common type of image data in the field of digital pathology, containing high-resolution tissue information. Furthermore, WSIs of primary tumors contain microenvironmental information directly associated with the growth of tumor cells. To effectively utilize this microenvironmental information. Firstly, we represented microenvironmental features of histopathological images as compact graphs. Secondly, this work aims to develop an enhanced lightweight graph neural network called the Adaptive Graph Clustering Network (AGCNet) for predicting cancer recurrence. Experiments are conducted on three cancer datasets from The Cancer Genome Atlas (TCGA), and AGCNet achieved an accuracy of 81.81% in BLCA, 69.66% in PAAD, and 81.96% in STAD. These results indicated that AGCNet is an effective model for predicting cancer recurrence and is expected to be applied in clinical applications.


Subject(s)
Neoplasms , Neural Networks, Computer , Humans , Cluster Analysis , Neoplasms/diagnostic imaging
2.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35043144

ABSTRACT

Predicting the response of cancer patients to a particular treatment is a major goal of modern oncology and an important step toward personalized treatment. In the practical clinics, the clinicians prefer to obtain the most-suited drugs for a particular patient instead of knowing the exact values of drug sensitivity. Instead of predicting the exact value of drug response, we proposed a deep learning-based method, named Siamese Response Deep Factorization Machines (SRDFM) Network, for personalized anti-cancer drug recommendation, which directly ranks the drugs and provides the most effective drugs. A Siamese network (SN), a type of deep learning network that is composed of identical subnetworks that share the same architecture, parameters and weights, was used to measure the relative position (RP) between drugs for each cell line. Through minimizing the difference between the real RP and the predicted RP, an optimal SN model was established to provide the rank for all the candidate drugs. Specifically, the subnetwork in each side of the SN consists of a feature generation level and a predictor construction level. On the feature generation level, both drug property and gene expression, were adopted to build a concatenated feature vector, which even enables the recommendation for newly designed drugs with only chemical property known. Particularly, we developed a response unit here to generate weighted genetic feature vector to simulate the biological interaction mechanism between a specific drug and the genes. For the predictor construction level, we built this level integrating a factorization machine (FM) component with a deep neural network component. The FM can well handle the discrete chemical information and both low-order and high-order feature interactions could be sufficiently learned. Impressively, the SRDFM works well on both single-drug recommendation and synergic drug combination. Experiment result on both single-drug and synergetic drug data sets have shown the efficiency of the SRDFM. The Python implementation for the proposed SRDFM is available at at https://github.com/RanSuLab/SRDFM Contact: ran.su@tju.edu.cn, gbx@mju.edu.cn and weileyi@sdu.edu.cn.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...