Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(2): e14288, 2024.
Article in English | MEDLINE | ID: mdl-38644531

ABSTRACT

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Subject(s)
Gene Expression Regulation, Plant , HSP20 Heat-Shock Proteins , Malus , Phylogeny , Plant Diseases , Plant Proteins , Malus/genetics , Malus/microbiology , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , HSP20 Heat-Shock Proteins/genetics , HSP20 Heat-Shock Proteins/metabolism , Ascomycota/physiology , Ascomycota/genetics , Ascomycota/pathogenicity , Multigene Family , Disease Resistance/genetics , Anthocyanins/metabolism
2.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203481

ABSTRACT

Malus sieversii (Ledeb.) M.Roem. is the ancestor of cultivated apples, and is an excellent germplasm resource with high resistance to cold. Artificial refrigerators were used to simulate the low temperature of -3 °C to treat Malus sieversii (Ledeb.) M.Roem. histoculture seedlings. Observations were performed to find the effects of freezing stress on the status of open or closed stomata, photosystems, and detection of metabolomic products in leaves of Malus sieversii (Ledeb.) M.Roem. histoculture seedlings. The percentage of closed stomata in the Malus sieversii (Ledeb.) M.Roem. histoculture seedlings increased, the maximum fluorescence (Fm') excited by a strong light (saturating pulse) was weakened relative to the real-time fluorescence in its vicinity, and the quantum yield of unregulated energy dissipation was increased in PSII under freezing stress. The metabolites in the leaves of the Malus sieversii (Ledeb. M.Roem.) histoculture seedlings were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry using CK, T12h, T36 h, and HF24h. Results demonstrated that cold stress in the Malus sieversii (Ledeb.) M.Roem. histoculture seedlings led to wilting, leaf stomatal closure, and photosystem damage. There were 1020 metabolites identified as lipids (10.2%), nucleotides and their derivatives (5.2%), phenolic acids (19.12%), flavonoids (24.51%), amino acids and their derivatives (7.75%), alkaloids (5.39%), terpenoids (8.24%), lignans (3.04%), organic acids (5.88%), and tannins (0.88%). There were 110 differential metabolites at CKvsT12h, 113 differential metabolites at CKvsT36h, 87 differential metabolites at T12hvsT36h, 128 differential metabolites at CKvsHF24h, 121 differential metabolites at T12hvsHF24h, and 152 differential metabolites at T36hvsHF24h. The differential metabolites in the leaves of the Malus sieversii (Ledeb.) M.Roem. seedlings grown under low-temperature stress mainly involved glycolysis, amino acid metabolism, lipid metabolism, pyrimidine metabolism, purine metabolism, and secondary metabolite metabolism. The Malus sieversii (Ledeb.) M.Roem. seedlings responded to the freezing stress by coordinating with each other through these metabolic pathways. The metabolic network of the leaves of the Malus sieversii (Ledeb.) M.Roem. histoculture seedlings under low temperature stress was also proposed based on the above pathways to deepen understanding of the response of metabolites of Malus sieversii (Ledeb.) M.Roem. to low-temperature stress and to lay a theoretical foundation for the development and utilization of Malus sieversii (Ledeb.) M.Roem. cultivation resources.


Subject(s)
Malus , Freezing , Seedlings , Metabolomics , Cold Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...