Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37610688

ABSTRACT

OBJECTIVE: Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS: We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS: We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION: Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.

2.
Ibrain ; 8(2): 190-198, 2022.
Article in English | MEDLINE | ID: mdl-37786885

ABSTRACT

Cerebral infarction, a common central nervous system complication after adult cardiac surgery, is one of the main factors leading to the poor prognosis of cardiac surgery patients besides cardiac insufficiency. However, there is currently no effective treatment for cerebral infarction. Therefore, early prevention and diagnosis of postoperative cerebral infarction are particularly important. There are many factors and mechanisms during and after cardiac surgery that play an important role in the occurrence of postoperative cerebral infarction, such as intraoperative embolism, systemic inflammatory response syndrome, atrial fibrillation, temperature regulation, blood pressure control, use of postoperative blood products, and so forth. The mechanism by which most risk factors act on the human body, leading to postoperative cerebral infarction, is not well understood, and further research is needed. Therefore, this paper aims to summarize and explain the relevant risk factors, mechanisms, clinical signs, imaging characteristics, and early diagnosis methods of cerebral infarction complications after cardiac surgery, and provides useful data for the establishment of related diagnosis and treatment standards.

3.
Med Sci Monit ; 25: 4149-4158, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31160548

ABSTRACT

BACKGROUND The aim of this study was to determine the role of AMP-activated protein kinase (AMPK) in myocardial insulin resistance after myocardial ischemia-reperfusion during cardiopulmonary bypass surgery in dogs. MATERIAL AND METHODS Twenty-four mongrel dogs were randomly assigned to 4 groups. The control group did not undergo aortic cross-clamping; the model group underwent 60 mins of aortic cross-clamping with 150 ml cardioplegic solution. The treatment group, the inhibition group respectively with 0.11mg/kg AICAR (AMPK agonist) in 150 ml cardioplegic solution and 0.11mg/kg Compound C (AMPK inhibitor) in 150 ml cardioplegic solution. The blood flow was determined and left ventricular myocardial tissue were taken at pre-bypass, 15, 60, and 90 min after aorta declamping, respectively. Expression of AMPK mRNA, p-AMPK and GLUT-4 proteins was determined by RT-PCR, IHC and WB. RESULTS Compared with the control group, receiving 60 min ischemia at 15 min after reperfusion, Myocardial Glucose Extraction Ratio were significantly decreased in the other 3 groups, it was significantly decreased from 20.0% to 1.2% at 60 min of reperfusion, and recovered to 6.1% after 90 min reperfusion in model group, while recovered to 4.1%, 12.0% after 90 min reperfusion respectively exposed to Compound C and AICAR. The expressions of p-AMPK, GLUT-4 protein and AMPK mRNA in myocardium were decreased in different experiment groups, but these changes occurred to a lesser extent in the treatment group. CONCLUSIONS The inability of GLUT-4 expression induced by the decreases in p-AMPK protein expression that may be one of the reasons for myocardial insulin resistance.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Insulin Resistance/physiology , Myocardial Reperfusion Injury/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cardioplegic Solutions , Cardiopulmonary Bypass/methods , Cardiopulmonary Bypass/veterinary , China , Coronary Artery Disease/metabolism , Coronary Artery Disease/surgery , Dogs , Female , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Heart Ventricles/physiopathology , Ischemia/metabolism , Male , Myocardial Ischemia/metabolism , Myocardial Reperfusion/methods , Myocardium/metabolism , Phosphorylation , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Ribonucleotides/pharmacology
4.
Int J Clin Exp Med ; 8(9): 15514-20, 2015.
Article in English | MEDLINE | ID: mdl-26629042

ABSTRACT

OBJECTIVE: To explore the effect (expression and implication) of hypoxia-inducible factor-1α (HIF-1α) silence induced by siRNA on the myocardial ischemia-reperfusion-induced insulin resistance in adult rats. METHODS: One-step enzymolysis method was used to isolate adult rat cardiomyocytes; adult rat cardiomyocytes were cultured; HIF-1α gene-specific Si-RNA was constructed and transfected into rat cardiomyocytes using liposome method. Myocardial IRI model was prepared. HIF-1α and glucose transporter 4 (GLUT-4) mRNA expression was detected by RT-PCR; distribution of GLUT-4 protein expression in adult rat cardiomyocytes was detected by immunofluorescence; Western blot was used for the detection of HIF-1α protein expression; isotope tracer assay was used to detect the changes in cell glucose (Glu) uptake rate. RESULTS: This method can stably get 85% to 90% active calcium tolerant adult rat cardiac myocytes, and the cultured cells were proved to be cardiomyocytes. After experiencing ischemia-reperfusion injury, HIF-1α mRNA expression levels in adult rat hypoxia cardiomyocytes had different degrees of increase compared with the control group (compared with the control group, P < 0.05). Compared with the model group, HIF-1α mRNA expression levels after ischemia and reperfusion in HIF-1αsi-RNA group and empty-vector group were lower than that in the control group and the model group; the expression reached the peak after 60 min of reperfusion, which did not change significantly in the control group. Expression of HIF-1α protein in myocardial cells was quite low in the control group; in the model group and intervention group, only after hypoxia-ischemia for 60 min, expression bands could be detected; especially in the model group, the expression had been increased until 60 min after reperfusion and began to decline from the time point of 180 min after reperfusion, but was still higher than that in the control group; in the intervention and empty-vector groups, it also increased rapidly at 60 min, but the expression was significantly lower than that in the model group; at 180 min after reperfusion, its protein expression peaked; while at 8 h after reperfusion, all the expression was extremely low. Compared with the control group, Glut4 mRNA expression in model group, transfected group and empty-vector group was reduced at the time points of T1-T4 (P < 0.05); the decline was the most significant at the time points of T1 and T2, followed by slightly increase at T3 and gradual recovery at T4; Compared with model group, Glut4 mRNA expression in transfection group was significantly reduced (P < 0.05); the decline was the most obvious at T1-T2, and then there was an increasing trend and it was recovered at T5 point. After experiencing ischemia, GLUT-4 protein expression changing trend was as follows: it was significantly reduced on the cell membrane, which was the most obvious from T1 to T3 and began to improve at T3, but still had not reached the level in the control group; it had been reached the levels of the control group at T5. After HIF-1αsi-RNA transfection and ischemia, GLUT-4 protein expression was increased in plasma and reduced on cell membrane; the decline was slightly improved at T3 and recovered to control distribution level at T5. After cardiac ischemia-reperfusion, glucose uptake rate decreased to varying degrees in myocardial cells and reached the lowest value after 60 min of ischemia, then gradually increased. After 8 h of reperfusion, the level in model group returned to the control level; compared with the model group, glucose concentration increased more serious in transfection group and empty-vector group after reperfusion. CONCLUSION: HIF-1α played a central regulatory role in this mechanism; HIF-1α may be one of the molecular mechanisms triggering myocardial IR.

5.
World J Surg Oncol ; 11: 199, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23947958

ABSTRACT

BACKGROUND: Nuclear factor (erythroid-derived 2)-like (Nrf)2 and metallothionein have been implicated in carcinogenesis. This study investigated the expression of Nrf2 and of Nrf2-targeted genes (NQO1 and GCLC) and the genes for the metallothionein (MT) isoforms (MT-1A and MT-2A) in human lung cancer and cancer-surrounding tissues. METHODS: Surgically removed lung cancer samples (n = 80) and cancer-surrounding tissues (n = 38) were collected from Zunyi Medical College Hospital, China. Total RNA was extracted, purified, and used for real-time reverse transcription-PCR analysis of interested genes. RESULTS: Expression of the Nrf2-targed genes NQO1 and GCLC tended to be higher (30 to 60%) in lung cancers, but was not significantly different from that in peri-cancer tissues. By contrast, expression of the genes for M)-1A, MT-2A, and the metal transcription factor MTF-1 were three-fold to four-fold lower in lung cancers. CONCLUSION: In surgical samples of lung cancer, MT expression was generally downregulated, whereas Nrf2 expression tended to be upregulated. These changes could play an integral role in lung carcinogenesis.


Subject(s)
Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Metallothionein/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NF-E2-Related Factor 2/genetics , Biomarkers, Tumor/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Metallothionein/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 44(6): 891-6, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24490496

ABSTRACT

OBJECTIVE: To observe the influenece of siRNA-mediated PPARgamma gene knockdown on insulin resistance induced by myocardial ischemia-reperfusion in adult rats. METHOD: The targeting PPARgamma siRNA was synthesized. The myocardial cells of adult rats were isolated and cultured. They were divided into four groups: IRI group, siRNA-PPARgamma group, empty group and blank control group. Two groups of rat cardiac cells were transfected with PPARgamma-targeting siRNA (siRNA-PPARgamma group), or empty small interfering RNA (NC group), respectively. Real-time quantitive PCR was performed to detect the mRNA levels of PPARgamma and GLUT-4. PPARgamma protein expression level was determined with Western blot test. The uptake rate of glucose was determined by the isotope tracer method. RESULT: The PPARgamma mRNA and protein expression of IRI group were significantly higher than those in blank control group (P < 0.05). The PPARgamma mRNA and protein expression of siRNA-PPARgamma group were significantly less than those in blank control and IRI group (P < 0.01). There was no significant difference in the PPARgamma mRNA and protein expression between the blank group and IRI group. The mRNA expression of GLUT-4 in blank control was no significant difference at each time point. The mRNA expression of GLUT-4 in IRI group was significantly less at 0 min, but increased gradually over the following time point. Finally, The mRNA expression of GLUT-4 in IRI group restored the same level as blank control. There was no significant difference in the GLUT-4 mRNA expression between the empty group and IRI group. The GLUT-4 mRNA expression in siRNA-PPARgamma group was significantly less than that in IRI group or NC group (P < 0.05), and recovered more slowly than IRI group. After given insulin, The uptake rate of glucose in siRNA-PPARgamma group was significantly less at each time point compared with those in IRI group (P < 0.05), declined by 49.78%, 38.94%, 18.61%, 11.54% at 0 min, 15 min, 1 h, 2 h, respectively. At 6 h time point, the uptake rate of glucose in siRNA-PPARgamma group reached the same level as IRI group. There was no significant difference was observed in the uptake rate of glucose between the empty group and IRI group. CONCLUSION: The siRNA-mediated PPARgamma gene knockdown may enhance the myocardial insulin resistance. The molecular mechanisms that trigger myocardial cell insulin resistance might because the silence of PPARgamma expression decreasing the expression of GLUT-4 and decline its transportation from cytoplasm to membrane.


Subject(s)
Insulin Resistance/genetics , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/cytology , PPAR gamma/genetics , RNA, Small Interfering/genetics , Animals , Cell Hypoxia/physiology , Cells, Cultured , Gene Knockdown Techniques , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , PPAR gamma/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL