Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766058

ABSTRACT

Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA). Unbiased profiling of RT-associated RNA and DNA ligands in DRT2-expressing cells revealed that reverse transcription generates concatenated cDNA repeats through programmed template jumping on the ncRNA. The presence of phage then triggers second-strand cDNA synthesis, leading to the production of long double-stranded DNA. Remarkably, this DNA product is efficiently transcribed, generating messenger RNAs that encode a stop codon-less, never-ending ORF (neo) whose translation causes potent growth arrest. Phylogenetic analyses and screening of diverse DRT2 homologs further revealed broad conservation of rolling-circle reverse transcription and Neo protein function. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.

2.
Nucleic Acids Res ; 51(9): 4519-4535, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37078593

ABSTRACT

CRISPR-associated transposases (CASTs) direct DNA integration downstream of target sites using the RNA-guided DNA binding activity of nuclease-deficient CRISPR-Cas systems. Transposition relies on several key protein-protein and protein-DNA interactions, but little is known about the explicit sequence requirements governing efficient transposon DNA integration activity. Here, we exploit pooled library screening and high-throughput sequencing to reveal novel sequence determinants during transposition by the Type I-F Vibrio cholerae CAST system (VchCAST). On the donor DNA, large transposon end libraries revealed binding site nucleotide preferences for the TnsB transposase, as well as an additional conserved region that encoded a consensus binding site for integration host factor (IHF). Remarkably, we found that VchCAST requires IHF for efficient transposition, thus revealing a novel cellular factor involved in CRISPR-associated transpososome assembly. On the target DNA, we uncovered preferred sequence motifs at the integration site that explained previously observed heterogeneity with single-base pair resolution. Finally, we exploited our library data to design modified transposon variants that enable in-frame protein tagging. Collectively, our results provide new clues about the assembly and architecture of the paired-end complex formed between TnsB and the transposon DNA, and inform the design of custom payload sequences for genome engineering applications with CAST systems.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , DNA Transposable Elements , RNA , Binding Sites/genetics , DNA Transposable Elements/genetics , Integration Host Factors/genetics , Transposases/genetics , Transposases/metabolism
3.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711804

ABSTRACT

CRISPR-associated transposons (CASTs) direct DNA integration downstream of target sites using the RNA-guided DNA binding activity of nuclease-deficient CRISPR-Cas systems. Transposition relies on several key protein-protein and protein-DNA interactions, but little is known about the explicit sequence requirements governing efficient transposon DNA integration activity. Here, we exploit pooled library screening and high-throughput sequencing to reveal novel sequence determinants during transposition by the Type I-F Vibrio cholerae CAST system. On the donor DNA, large mutagenic libraries identified core binding sites recognized by the TnsB transposase, as well as an additional conserved region that encoded a consensus binding site for integration host factor (IHF). Remarkably, we found that VchCAST requires IHF for efficient transposition, thus revealing a novel cellular factor involved in CRISPR-associated transpososome assembly. On the target DNA, we uncovered preferred sequence motifs at the integration site that explained previously observed heterogeneity with single-base pair resolution. Finally, we exploited our library data to design modified transposon variants that enable in-frame protein tagging. Collectively, our results provide new clues about the assembly and architecture of the paired-end complex formed between TnsB and the transposon DNA, and inform the design of custom payload sequences for genome engineering applications of CAST systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...