Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
J Thorac Dis ; 16(4): 2244-2258, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738240

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a high mortality rate and limited treatment efficacy. Nintedanib, a tyrosine kinase inhibitor, is clinically used to treat pulmonary fibrosis. At present, only nintedanib is on the market for the treatment of pulmonary fibrosis. Pazopanib is a drug for the treatment of renal cell carcinoma and advanced soft tissue sarcoma. Methods: In this study, we explored whether pazopanib can attenuate bleomycin (BLM)-induced pulmonary fibrosis and explored its antifibrotic mechanism. In vivo and in vitro investigations were carried out to investigate the efficacy and mechanism of action of pazopanib in pulmonary fibrosis. Results: In vivo experiments showed that pazopanib can alleviate pulmonary fibrosis caused by BLM, reduce the degree of collagen deposition and improve lung function. In vitro experiments showed that pazopanib suppressed transforming growth factor-ß1 (TGF-ß1)-induced myofibroblast activation and promoted apoptosis and autophagy in myofibroblasts. Further mechanistic studies demonstrated that pazopanib inhibited the TGF-ß1/Smad and non-Smad signaling pathways during fibroblast activation. Conclusions: In conclusion, pazopanib attenuated BLM-induced pulmonary fibrosis by suppressing the TGF-ß1 signaling pathway. Pazopanib inhibits myofibroblast activation, migration, autophagy, apoptosis, and extracellular matrix (ECM) buildup by downregulating the TGF-ß1/Smad signal route and the TGF-ß1/non-Smad signal pathway. It has the same target as nintedanib and is a tyrosine kinase inhibitor.

2.
Mol Metab ; 85: 101957, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740087

ABSTRACT

OBJECTIVES: Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars. METHODS: We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice. RESULTS: We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp-/- primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice. CONCLUSIONS: Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.

3.
Genome Biol ; 25(1): 85, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570851

ABSTRACT

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Gene Expression Profiling , Xylem/genetics , Xylem/growth & development , Transcriptome , Single-Cell Analysis
4.
New Phytol ; 242(3): 1113-1130, 2024 May.
Article in English | MEDLINE | ID: mdl-38418427

ABSTRACT

Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.


Subject(s)
Genome-Wide Association Study , Populus , Plant Leaves/anatomy & histology , Gene Regulatory Networks , Gene Expression Regulation, Plant
5.
Isotopes Environ Health Stud ; 60(2): 174-190, 2024 May.
Article in English | MEDLINE | ID: mdl-38270337

ABSTRACT

Isotope technology is widely used in geochemical mechanisms analysis; however, studies on the origin of pit lake water by isotopes in coal concentration areas in grassland are rare. In this study, 20 groups of water samples were collected, which were subjected to chemical analysis to determine the hydrogeochemical characteristics of pit lake water. The mechanisms of pit lake water formation and recharge-evaporation were ascertained through principal component analysis and the Rayleigh fractionation model. The results indicate that the phreatic water is least affected by evaporation, followed by confined water, surface water and pit lake water. The ionic composition of surface water, phreatic water and most of the confined water is mainly affected by leaching, some confined water can be recharged by surface or phreatic water; while the ionic composition of pit lake water is dominantly affected by evaporation (69.4 %) and is less affected by groundwater recharge (17.1 %) and human activities (11.5 %). The pit lake water is recharged by precipitation, phreatic water and the lateral runoff of confined water; however, the proportion of phreatic and confined water recharge is small. The evaporative loss of the pit lake water is 40-61 % of the initial water body.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Environmental Monitoring/methods , Lakes/chemistry , Isotopes/analysis , Groundwater/chemistry , Water/analysis , China , Water Pollutants, Chemical/analysis
6.
Glob Chang Biol ; 30(1): e17072, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273547

ABSTRACT

Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.


Subject(s)
Carbon Sequestration , Ecosystem , Climate Change , Forests , Carbon , Soil
7.
Sci Total Environ ; 914: 169899, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38184245

ABSTRACT

The detection and attribution of biodiversity change is of great scientific interest and central to policy effects aimed at meeting biodiversity targets. Yet, how such a diverse climate scenarios influence forest biodiversity and composition dynamics remains unclear, particularly in high diversity systems of subtropical forests. Here we used data collected from the permanent sample plot spanning 26 years in an old-growth subtropical forest. Combining various climatic events (extreme drought, subsequent drought, warming, and windstorm), we analyzed long-term dynamics in multiple metrics: richness, turnover, density, abundance, reordering and stability. We did not observe consistent and directional trends in species richness under various climatic scenarios. Still, drought and windstorm events either reduced species gains or increased species loss, ultimately increased species turnover. Tree density increased significantly over time as a result of rapid increase in smaller individuals due to mortality in larger trees. Climate events caused rapid changes in dominant populations due to a handful of species undergoing strong increases or declines in abundance over time simultaneously. Species abundance composition underwent significant changes, particularly in the presence of drought and windstorm events. High variance ratio and species synchrony weaken community stability under various climate stress. Our study demonstrates that all processes underlying forest community composition changes often occur simultaneously and are equally affected by climate events, necessitating a holistic approach to quantifying community changes. By recognizing the interconnected nature of these processes, future research should accelerate comprehensive understanding and predicting of how forest vegetation responds to global climate change.


Subject(s)
Climate Change , Forests , Humans , Biodiversity , Trees , Droughts
8.
BMC Genomics ; 25(1): 81, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243219

ABSTRACT

BACKGROUND: The expression of biological traits is modulated by genetics as well as the environment, and the level of influence exerted by the latter may vary across characteristics. Photosynthetic traits in plants are complex quantitative traits that are regulated by both endogenous genetic factors and external environmental factors such as light intensity and CO2 concentration. The specific processes impacted occur dynamically and continuously as the growth of plants changes. Although studies have been conducted to explore the genetic regulatory mechanisms of individual photosynthetic traits or to evaluate the effects of certain environmental variables on photosynthetic traits, the systematic impact of environmental variables on the dynamic process of integrated plant growth and development has not been fully elucidated. RESULTS: In this paper, we proposed a research framework to investigate the genetic mechanism of high-dimensional complex photosynthetic traits in response to the light environment at the genome level. We established a set of high-dimensional equations incorporating environmental regulators to integrate functional mapping and dynamic screening of gene‒environment complex systems to elucidate the process and pattern of intrinsic genetic regulatory mechanisms of three types of photosynthetic phenotypes of Populus simonii that varied with light intensity. Furthermore, a network structure was established to elucidate the crosstalk among significant QTLs that regulate photosynthetic phenotypic systems. Additionally, the detection of key QTLs governing the response of multiple phenotypes to the light environment, coupled with the intrinsic differences in genotype expression, provides valuable insights into the regulatory mechanisms that drive the transition of photosynthetic activity and photoprotection in the face of varying light intensity gradients. CONCLUSIONS: This paper offers a comprehensive approach to unraveling the genetic architecture of multidimensional variations in photosynthetic phenotypes, considering the combined impact of integrated environmental factors from multiple perspectives.


Subject(s)
Photosynthesis , Populus , Photosynthesis/genetics , Light , Phenotype , Populus/genetics , Genetic Variation
9.
Nucleic Acids Res ; 52(D1): D1588-D1596, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37933857

ABSTRACT

Perennial woody plants hold vital ecological significance, distinguished by their unique traits. While significant progress has been made in their genomic and functional studies, a major challenge persists: the absence of a comprehensive reference platform for collection, integration and in-depth analysis of the vast amount of data. Here, we present PPGR (Resource for Perennial Plant Genomes and Regulation; https://ngdc.cncb.ac.cn/ppgr/) to address this critical gap, by collecting, integrating, analyzing and visualizing genomic, gene regulation and functional data of perennial plants. PPGR currently includes 60 species, 847 million protein-protein/TF (transcription factor)-target interactions, 9016 transcriptome samples under various environmental conditions and genetic backgrounds. Noteworthy is the focus on genes that regulate wood production, seasonal dormancy, terpene biosynthesis and leaf senescence representing a wealth of information derived from experimental data, literature mining, public databases and genomic predictions. Furthermore, PPGR incorporates a range of multi-omics search and analysis tools to facilitate browsing and application of these extensive datasets. PPGR represents a comprehensive and high-quality resource for perennial plants, substantiated by an illustrative case study that demonstrates its capacity in unraveling gene functions and shedding light on potential regulatory processes.


Subject(s)
Databases, Genetic , Genome, Plant , Genomics , Plants/genetics , Transcriptome
10.
Plant Biotechnol J ; 22(4): 970-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988335

ABSTRACT

Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples. Initially, we conducted a module-based association study in a natural population of 435 Populus tomentosa, pinpointing PtoDPb1 as the key gene contributing to wood formation through the carbohydrate metabolic pathway. Overexpressing PtoDPb1 led to a 52.91% surge in cellulose content, a reduction of 14.34% in fibre length, and an increment of 38.21% in fibre width in transgenic poplar. Moreover, by integrating co-expression patterns, RNA-sequencing analysis, and expression quantitative trait nucleotide (eQTN) mapping, we identified a PtoDPb1-mediated genetic module of PtoWAK106-PtoDPb1-PtoE2Fa-PtoUGT74E2 responsible for fibre properties in Populus. Additionally, we discovered the two PtoDPb1 haplotypes that influenced protein interaction efficiency between PtoE2Fa-PtoDPb1 and PtoDPb1-PtoWAK106, respectively. The transcriptional activation activity of the PtoE2Fa-PtoDPb1 haplotype-1 complex on the promoter of PtoUGT74E2 surpassed that of the PtoE2Fa-PtoDPb1 haplotype-2 complex. Taken together, our findings provide novel insights into the regulatory mechanisms of fibre properties in Populus, orchestrated by PtoDPb1, and offer a practical module for expediting genetic breeding in woody plants via molecular design.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Linkage Disequilibrium , Ecosystem , Plant Breeding , Cellulose/metabolism , Wood/genetics , Gene Expression Regulation, Plant/genetics
11.
Mol Divers ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37796389

ABSTRACT

STING is an important immune-associated protein that localizes in the endoplasmic reticulum membrane. Upon being activated by its agonists, STING triggers the IRF and NF-κB pathways, which generates type I interferons and proinflammatory cytokines, and ultimately primes the innate immune responses to achieve valid antitumor efficacy. We designed and synthesized a series of benzo[b]thiophene-2-carboxamide derivatives. Through STING-agonistic activity evaluation, compounds 12d and 12e exhibited marginal human STING-activating activities. Western blot analysis demonstrated that both 12d and 12e treatment increased the phosphorylation of the downstream signaling molecules (TBK1 and IRF3) of STING. The proposed binding mode of 12d/12e and STING protein displayed that two canonical hydrogen bonds, a π-π stacking interaction, as well as a π-cation interaction formed between the agonist and the CDN-binding domain of STING protein.

12.
Sci Total Environ ; 905: 167105, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717755

ABSTRACT

It has long been assumed that soil acidification increases reactive iron and/or aluminum (Fe/Al) oxides and promotes Pi sorption onto mineral surfaces, resulting in a decrease in Pi. However, this assumption has seldom been tested in long-term field experiments. Using a 12-year acid addition experiment in a tropical forest, we demonstrated that soil acidification increased the content of noncrystalline Fe and Al oxides by 16.3 % and 27.7 %, respectively; whereas it did not alter the absorbed Pi pool and Pi sorption capacity. Furthermore, soil acidification increased the Fe/Al-bound organic matter content by 82.5 %, causing a 54.9 % reduction in Pi desorption, a 42.3 % decrease in soluble Pi content, and a 9.2 % increase in occluded Pi content. Our findings demonstrate that soil acidification reduces Pi bioavailability by repressing Pi desorption rather than enhancing Pi sorption. These results could be attributed to the enhanced organomineral association, which competes for sorption sites with Pi and promotes the Pi occlusion. However, the interactions between organomineral-Pi have not been incorporated into global land models, which may overestimate ecosystem productivity under future acid rain scenarios.

13.
Environ Sci Technol ; 57(30): 11075-11083, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37471467

ABSTRACT

Acid deposition in China has been declining since the 2000s. While this may help mitigate acidification in forest soils and water, little is known about the recovery of soils and water from previous severe acidification in tropical China. Here, we assessed the chemistry of mineral soils, water, and acid gases (SO2 and NOx) from three successional forest types in tropical China from 2000 to 2022. Our results showed that soil pH increased synchronously from 3.9 (2000-2015) to 4.2 (2016-2022) across all three forest types, with exchangeable acid initially decreasing and thereafter stabilizing. Surface and ground water pH also gradually increased throughout the monitoring period. Soil pH recovery was stronger in the primary than in the planted forest. However, soil pH recovery lagged behind the increase in rainfall pH by approximately a decade. The recovery of soil pH was likely related to the positive effects of the dissolution of Al/Fe-hydroxysulfate mineral and subsequent sulfur desorption on soil acid-neutralizing capacity, increased soil organic matter, and climate warming, but was likely moderated by increased exchangeable aluminum and potentially proton-producing hydroxysulfate mineral dissolution that caused the lagged soil pH recovery. Surface and ground water pH recovery was attributed to increased water acid-neutralizing capacity. Our study reports the potential for the recovery of acidified soil and water following decreased acid deposition and provides new insights into the functional recovery of acid-sensitive forests.

14.
Plant Cell ; 35(11): 4046-4065, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37522322

ABSTRACT

Perennial trees must maintain stem growth throughout their entire lifespan to progressively increase in size as they age. The overarching question of the molecular mechanisms that govern stem perennial growth in trees remains largely unanswered. Here we deciphered the genetic architecture that underlies perennial growth trajectories using genome-wide association studies (GWAS) for measures of growth traits across years in a natural population of Populus tomentosa. By analyzing the stem growth trajectory, we identified PtoP4H9, encoding prolyl 4-hydroxylase 9, which is responsible for the natural variation in the growth rate of diameter at breast height (DBH) across years. Quantifying the dynamic genetic contribution of PtoP4H9 loci to stem growth showed that PtoP4H9 played a pivotal role in stem growth regulation. Spatiotemporal expression analysis showed that PtoP4H9 was highly expressed in cambium tissues of poplars of various ages. Overexpression and knockdown of PtoP4H9 revealed that it altered cell expansion to regulate cell wall modification and mechanical characteristics, thereby promoting stem growth in Populus. We showed that natural variation in PtoP4H9 occurred in a BASIC PENTACYSTEINE transcription factor PtoBPC1-binding promoter element controlling PtoP4H9 expression. The geographic distribution of PtoP4H9 allelic variation was consistent with the modes of selection among populations. Altogether, our study provides important genetic insights into dynamic stem growth in Populus, and we confirmed PtoP4H9 as a potential useful marker for breeding or genetic engineering of poplars.


Subject(s)
Populus , Genome-Wide Association Study , Prolyl Hydroxylases/genetics , Prolyl Hydroxylases/metabolism , Genes, Plant , Phenotype
15.
Plant Biotechnol J ; 21(10): 2002-2018, 2023 10.
Article in English | MEDLINE | ID: mdl-37392407

ABSTRACT

Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.


Subject(s)
Populus , Alleles , Populus/genetics , Populus/metabolism , Wood/genetics , Wood/metabolism , Genome-Wide Association Study , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Genomics
16.
Plant Physiol ; 193(1): 736-755, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37247391

ABSTRACT

Drought stress limits woody species productivity and influences tree distribution. However, dissecting the molecular mechanisms that underpin drought responses in forest trees can be challenging due to trait complexity. Here, using a panel of 300 Chinese white poplar (Populus tomentosa) accessions collected from different geographical climatic regions in China, we performed a genome-wide association study (GWAS) on seven drought-related traits and identified PtoWRKY68 as a candidate gene involved in the response to drought stress. A 12-bp insertion and/or deletion and three nonsynonymous variants in the PtoWRKY68 coding sequence categorized natural populations of P. tomentosa into two haplotype groups, PtoWRKY68hap1 and PtoWRKY68hap2. The allelic variation in these two PtoWRKY68 haplotypes conferred differential transcriptional regulatory activities and binding to the promoters of downstream abscisic acid (ABA) efflux and signaling genes. Overexpression of PtoWRKY68hap1 and PtoWRKY68hap2 in Arabidopsis (Arabidopsis thaliana) ameliorated the drought tolerance of two transgenic lines and increased ABA content by 42.7% and 14.3% compared to wild-type plants, respectively. Notably, PtoWRKY68hap1 (associated with drought tolerance) is ubiquitous in accessions in water-deficient environments, whereas the drought-sensitive allele PtoWRKY68hap2 is widely distributed in well-watered regions, consistent with the trends in local precipitation, suggesting that these alleles correspond to geographical adaptation in Populus. Moreover, quantitative trait loci analysis and an electrophoretic mobility shift assay showed that SHORT VEGETATIVE PHASE (PtoSVP.3) positively regulates the expression of PtoWRKY68 under drought stress. We propose a drought tolerance regulatory module in which PtoWRKY68 modulates ABA signaling and accumulation, providing insight into the genetic basis of drought tolerance in trees. Our findings will facilitate molecular breeding to improve the drought tolerance of forest trees.


Subject(s)
Arabidopsis , Populus , Drought Resistance , Transcription Factors/genetics , Transcription Factors/metabolism , Populus/metabolism , Alleles , Genome-Wide Association Study , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Droughts , Abscisic Acid/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
17.
Eur J Med Chem ; 253: 115319, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37037141

ABSTRACT

Fatty-acid binding protein 4 (FABP4) is an essential driver for the progression of metabolic-related inflammatory diseases including obesity, diabetes, atherosclerosis, and various lipid metabolism-related tumors. However, FABP4 inhibitors are not yet available for clinical use, which may be associated with their poor selectivity of FABP3, unsatisfactory efficacy and physicochemical properties. Herein, we reported a systematic optimization of a class of biphenyl scaffold molecules as potent FABP4 inhibitors. Further in vitro and in vivo pharmacokinetic studies identified a selective and orally bioavailable compound 10g, with Ki of 0.51 µM against FABP4, Ki of 33.01 µM against FABP3 and bioavailability F% value of 89.4%. In vivo anti-inflammatory efficacy and multi-organ protection study in LPS-induced inflammatory mice model highlighted the potential of compound 10g as a therapeutic candidate in inflammation-related diseases.


Subject(s)
Biphenyl Compounds , Fatty Acid-Binding Proteins , Mice , Animals , Biphenyl Compounds/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism
18.
Research (Wash D C) ; 6: 0102, 2023.
Article in English | MEDLINE | ID: mdl-37011280

ABSTRACT

The stimulator of interferon genes (STING) protein is an important and promising innate immune target for tumor therapy. However, the instability of the agonists of STING and their tendency to cause systemic immune activation is a hurdle. The STING activator, cyclic di-adenosine monophosphate (CDA), produced by the modified Escherichia coli Nissle 1917, shows high antitumor activity and effectively reduces the systemic effects of the "off-target" caused by the activation of the STING pathway. In this study, we used synthetic biological approaches to optimize the translation levels of the diadenylate cyclase that catalyzes CDA synthesis in vitro. We developed 2 engineered strains, CIBT4523 and CIBT4712, for producing high levels of CDA while keeping their concentrations within a range that did not compromise the growth. Although CIBT4712 exhibited stronger induction of the STING pathway corresponding to in vitro CDA levels, it had lower antitumor activity than CIBT4523 in an allograft tumor model, which might be related to the stability of the surviving bacteria in the tumor tissue. CIBT4523 exhibited complete tumor regression, prolonged survival of mice, and rejection of rechallenged tumors, thus, offering new possibilities for more effective tumor therapy. We showed that the appropriate production of CDA in engineered bacterial strains is essential for balancing antitumor efficacy and self-toxicity.

19.
New Phytol ; 238(4): 1636-1650, 2023 05.
Article in English | MEDLINE | ID: mdl-36856329

ABSTRACT

Root microbiota composition shifts during the development of most annual plants. Although some perennial plants can live for centuries, the host-microbiome partnerships and interaction mechanisms underlying their longevity remain unclear. To address this gap, we investigated age-related changes in the root metabolites, transcriptomes, and microbiome compositions of 1- to 35-yr-old Populus tomentosa trees. Ten co-response clusters were obtained according to their accumulation patterns, and members of each cluster displayed a uniform and clear pattern of abundance. Multi-omics network analysis demonstrated that the increased abundance of Actinobacteria with tree age was strongly associated with the flavonoid biosynthesis. Using genetic approaches, we demonstrate that the flavonoid biosynthesis regulator gene Transparent Testa 8 is associated with the recruitment of flavonoid-associated Actinobacteria. Further inoculation experiments of Actinobacteria isolates indicated that their colonization could significantly improve the host's phenotype. Site-directed mutagenesis revealed that the hyBl gene cluster, involved in biosynthesis of an aminocyclitol hygromycin B analog in Streptomyces isolate bj1, is associated with disease suppression. We hypothesize that interactions between perennial plants and soil microorganisms lead to gradual enrichment of a subset of microorganisms that may harbor a wealth of currently unknown functional traits.


Subject(s)
Microbiota , Populus , Trees/microbiology , Plant Roots/microbiology , Microbiota/genetics , Bacteria/metabolism , Defense Mechanisms
20.
Diabetes ; 72(3): 348-361, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36508222

ABSTRACT

Dysregulated lipid droplet accumulation has been identified as one of the main contributors to liver steatosis during nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms for excessive lipid droplet formation in the liver remain largely unknown. In the current study, hepatic E4 promoter-binding protein 4 (E4BP4) plays a critical role in promoting lipid droplet formation and liver steatosis in a high-fat diet (HFD)-induced NAFLD mouse model. Hepatic E4bp4 deficiency (E4bp4-LKO) protects mice from HFD-induced liver steatosis independently of obesity and insulin resistance. Our microarray study showed a markedly reduced expression of lipid droplet binding genes, such as Fsp27, in the liver of E4bp4-LKO mice. E4BP4 is both necessary and sufficient to activate Fsp27 expression and lipid droplet formation in primary mouse hepatocytes. Overexpression of Fsp27 increased lipid droplets and triglycerides in E4bp4-LKO primary mouse hepatocytes and restored hepatic steatosis in HFD-fed E4bp4-LKO mice. Mechanistically, E4BP4 enhances the transactivation of Fsp27 by CREBH in hepatocytes. Furthermore, E4BP4 is modified by SUMOylation, and HFD feeding induces deSUMOylation of hepatic E4BP4. SUMOylation of five lysine residues of E4BP4 is critical for the downregulation of Fsp27 and lipid droplets by cAMP signaling in hepatocytes. Taken together, this study revealed that E4BP4 drives liver steatosis in HFD-fed mice through its regulation of lipid droplet binding proteins. Our study also highlights the critical role of deSUMOylation of hepatic E4BP4 in promoting NAFLD.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Diet, High-Fat , Non-alcoholic Fatty Liver Disease , Animals , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Hepatocytes/metabolism , Lipid Droplets/metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...