Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 25, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30631110

ABSTRACT

Soil pH is commonly considered a dominant factor affecting the function of microbiota. Few studies, however, have focused on communities of bacteria able to solubilize inorganic phosphate (iPSB), which are important for the mobilization of soil phosphorus (P), because finding an effective method to assess the abundance and diversity of iPSB communities is difficult. We used a newly reported method of database alignment and quantified the gene pqqC to analyze the compositions of iPSB communities from five soils with pH gradients ranging from 4 to 8. The iPSB community structure differed significantly between these soil types. Among iPSB community, Bacillus was the dominant genus, followed by Arthrobacter and Streptomyces. A redundancy analysis indicated that soil pH was the most important of 15 soil factors and their pairwise interactions, accounting for 5.12% of the variance. The abundance of the iPSB communities increased with pH within the gradients which was confirmed by experimental adjustment of pH, suggesting that the defect P status in high pH soil was speculated as the driving force of iPSB community population. Our study demonstrated the dominant role of soil pH on the iPSB community, which may contribute to the understanding the possible mechanism of microbial P mobilization for better improvement of P use-efficiency.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biota/drug effects , Phosphates/metabolism , Soil Microbiology , Soil/chemistry , Hydrogen-Ion Concentration
2.
AMB Express ; 8(1): 47, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29589217

ABSTRACT

The ability to solubilize fixed inorganic phosphorus (P) for plant growth is important for increasing crop yield. More P can be released by inoculating soil with inorganic-phosphate-solubilizing bacteria (iPSBs). We used 96-well microplates instead of traditional 200-mm petri dishes to rapidly screen iPSB strains for their solubilizing ability. We simultaneously obtained 76 iPSB isolates from 576 wells containing two agricultural soils. This method conveniently identified positive iPSB strains and effectively prevented fungal cross-contamination. Maximum-likelihood phylogenetic trees of the isolated strains showed that Bacillus megaterium was the most dominant iPSB, and strains Y99, Y95, Y924 and Y1412 were selected as representatives for the analysis of P solubilization. Succinic acid was the main organic acid of B. megaterium for releasing P. It was strongly correlated with the increase in soluble P concentration during 168 h of incubation of these four strains. pH was negatively exponentially correlated with the amount of soluble P in the medium, and the amount of succinic acid was strongly linearly correlated with the amount of P released (P < 0.001), suggesting that organic acid may mobilize microbial P. Our study provides an efficient and effective method for identifying and analyzing the growth of iPSB strains able to solubilize inorganic P and gives a better understanding of the mechanism of P solubilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...