Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Immunol ; 14: 1190707, 2023.
Article in English | MEDLINE | ID: mdl-37583703

ABSTRACT

Background: Stimulation of IFN genes (STING) is central to the production of interferon and proinflammatory cytokines in response to microbial DNA or self-DNA in the cytosol. The detrimental role of the activation of STING during sepsis has been well documented. Methods: Here, we found that gelsevirine (GS) potently inhibit interferon and inflammatory cytokine induction in macrophages exposed to STING agonists (2'3'-cGAMP, IFN stimulatory DNA (ISD), and poly(dA:dT)). I n silico docking analysis and surface plasmon resonance binding study showed that GS bonds with high affinity to the cyclic dinucleotide (CDN)-binding pocket of STING. Biotin pull-down assay also confirmed that GS competitively bonded to STING protein. Furthermore, GS inhibited 2'3'-cGAMP-induced STING dimerization and subsequent activation. In addition, GS induced K48-linked STING ubiquitination and degradation, which was likely through upregulating and recruiting TRIM21. In mice exposed to cecal ligation and puncture (CLP)-induced sepsis, post-operative administration of GS significantly extended the survival period and mitigated acute organ damage. Results: Overall, GS inhibited STING signaling by competitively binding to the CDN-binding pocket to lock STING in an inactive open conformation, while also promoting K48-linked STING ubiquitination and degradation. Conclusions: Our findings identify a novel STING-specific inhibitor that could be applied in the treatment of sepsis.


Subject(s)
Sepsis , Mice , Animals , Sepsis/drug therapy , Sepsis/metabolism , Inflammation/drug therapy , Cytokines , Signal Transduction , Interferons
2.
Org Biomol Chem ; 15(26): 5571-5578, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28639676

ABSTRACT

An efficient [3 + 2] cycloaddition of 3-ylideneoxindoles with in situ generated CF2HCHN2 for the syntheses of spirooxindoles has been developed. This methodology gives access to a range of relatively complex spirooxindoles featuring a CF2H group and three contiguous stereogenic centers in up to 84% yield and 99 : 1 trans/cis.

SELECTION OF CITATIONS
SEARCH DETAIL
...