Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Chembiochem ; : e202400316, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867605

ABSTRACT

With the increasing use of polyethylene glycol (PEG) based proteins and drug delivery systems, anti-PEG antibodies have commonly been detected among the population, causing the accelerated blood clearance and hypersensitivity reactions, poses potential risks to the clinical efficacy and safety of PEGylated drugs. Therefore, vigilant monitoring of anti-PEG antibodies is crucial for both research and clinical guidance regarding PEGylated drugs. The enzyme-linked immunosorbent assay (ELISA) is a common method for detecting anti-PEG antibodies. However, diverse coating methods, blocking solutions and washing solutions have been employed across different studies, and unsuitable use of Tween 20 as the surfactant even caused biased results. In this study, we established the optimal substrate coating conditions, and investigated the influence of various surfactants and blocking solutions on the detection accuracy. The findings revealed that incorporating 1% bovine serum albumin into the serum dilution in the absence of surfactants will result the credible outcomes of anti-PEG antibody detection.

2.
Toxicology ; 506: 153850, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821196

ABSTRACT

Fine particulate matter (PM2.5)-induced metabolic disorders have attracted increasing attention, however, the underlying molecular mechanism of PM2.5-induced hepatic bile acid disorder remains unclear. In this study, we investigated the effects of PM2.5 components on the disruption of bile acid in hepatocytes through farnesoid X receptor (FXR) pathway. The receptor binding assays showed that PM2.5 extracts bound to FXR directly, with half inhibitory concentration (IC50) value of 21.7 µg/mL. PM2.5 extracts significantly promoted FXR-mediated transcriptional activity at 12.5 µg/mL. In mouse primary hepatocytes, we found PM2.5 extracts (100 µg/mL) significantly decreased the total bile acid levels, inhibited the expression of bile acid synthesis gene (Cholesterol 7 alpha-hydroxylase, Cyp7a1), and increased the expression of bile acid transport genes (Multidrug resistance associated protein 2, Abcc2; and Bile salt export pump, Abcb11). Moreover, these alterations were significantly attenuated by knocking down FXR in hepatocytes. We further divided the organic components and water-soluble components from PM2.5, and found that two components bound to and activated FXR, and decreased the bile acid levels in hepatocytes. In addition, benzo[a]pyrene (B[a]P) and cadmium (Cd) were identified as two bioactive components in PM2.5-induced bile acid disorders through FXR signaling pathway. Overall, we found PM2.5 components could bind to and activate FXR, thereby disrupting bile acid synthesis and transport in hepatocytes. These new findings also provide new insights into PM2.5-induced toxicity through nuclear receptor pathways.

3.
Article in English | MEDLINE | ID: mdl-38600661

ABSTRACT

High-voltage resistant quasi-solid-state polymer electrolytes (QSPEs) are promising for enhancing the energy density of lithium-metal batteries in practice. However, side reactions occurring at the interfaces between the anodes or cathodes and QSPEs considerably reduce the lifespan of high-voltage LMBs. In this study, a copolymer of vinyl ethylene carbonate (VEC) and poly(ethylene glycol) diacrylate (PEGDA) was used as the framework, with a cellulose membrane (CE) as the supporting layer. Based on density functional theory calculations, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), an ionic liquid, was screened because of its lowest unoccupied molecular orbital energy level as a modifying agent for the in situ P(VECx-EGy)/Pyrz/LiTFSI@CE QSPEs synthesis. Pyr14+, with a lithiophobic alkyl chain, forms a dense positive ion shielding layer on the protruding tips of deposited lithium, facilitating uniform and smooth lithium deposition. Pyr14TFSI assists in constructing a stable solid electrolyte interphase (SEI) layer on the Li surface enriched with LiF, Li3N, and RCOOLi. The modulation of lithium deposition behavior on the anode by Pyr14TFSI ensures stable Li plating/stripping for >1500 h. A Li-Cu cell exhibits stable cycling for >200 cycles at a current density of 0.05 mA cm-2, with an average Coulombic efficiency of 92.7%. In situ polymerization ensures that P(VECx-EGy)/Pyrz/LiTFSI@CE QSPEs exhibit excellent interface compatibility with the anode and the cathode. The CR2032 button cell Li|P(VEC1-EG0.06)/Pyr0.4/LiTFSI@CE|LiCoO2 demonstrates stable cycling with a negligible capacity decay of 0.083% per cycle for >390 cycles at 25 °C and 0.2 C when using a high-voltage LiCoO2 (4.45 V) cathode. Furthermore, a 7.1 mAh pouch cell achieves stable charge-discharge cycles, confirming the pronounced stability of the as-fabricated QSPE at the interfaces of the high-voltage LiCoO2 cathode and Li anode.

4.
Sensors (Basel) ; 24(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475188

ABSTRACT

Hyperspectral anomaly detection is used to recognize unusual patterns or anomalies in hyperspectral data. Currently, many spectral-spatial detection methods have been proposed with a cascaded manner; however, they often neglect the complementary characteristics between the spectral and spatial dimensions, which easily leads to yield high false alarm rate. To alleviate this issue, a spectral-spatial information fusion (SSIF) method is designed for hyperspectral anomaly detection. First, an isolation forest is exploited to obtain spectral anomaly map, in which the object-level feature is constructed with an entropy rate segmentation algorithm. Then, a local spatial saliency detection scheme is proposed to produce the spatial anomaly result. Finally, the spectral and spatial anomaly scores are integrated together followed by a domain transform recursive filtering to generate the final detection result. Experiments on five hyperspectral datasets covering ocean and airport scenes prove that the proposed SSIF produces superior detection results over other state-of-the-art detection techniques.

5.
Adv Healthc Mater ; 13(13): e2303957, 2024 May.
Article in English | MEDLINE | ID: mdl-38339835

ABSTRACT

Interleukin-37 (IL-37) is a potent anti-inflammatory cytokine belonging to the IL-1 family. This study investigates the regulatory mechanism and reparative effects of IL-37 on HF-related human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) and engineered human heart tissue subjected to hypoxia and H2O2 treatment. The contractile force and Ca2+ conduction capacity of the tissue are assessed using a stretching platform and high-resolution fluorescence imaging system. This investigation reveals that IL-37 treatment significantly enhances cell viability, calcium transient levels, contractile force, and Ca2+ conduction capacity in HF-related hiPSC-CMs and engineered human heart tissue. Notably, IL-37 facilitates the upregulation of sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) through enhancing nuclear p-STAT3 levels. This effect is mediated by the binding of p-STAT3 to the SERCA2a promoter, providing a novel insight on the reparative potential of IL-37 in HF. IL-37 demonstrates its ability to enhance systolic function by modulating myocardial calcium handling via the p-STAT3/SERCA2a axis in HF-related engineered human heart tissue (as shown in schematic diagram).


Subject(s)
Calcium , Interleukin-1 , Myocytes, Cardiac , STAT3 Transcription Factor , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Tissue Engineering , Humans , STAT3 Transcription Factor/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Tissue Engineering/methods , Myocytes, Cardiac/metabolism , Calcium/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Heart Failure/metabolism , Myocardium/metabolism , Cell Survival/drug effects
6.
Cell Regen ; 13(1): 6, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424219

ABSTRACT

Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.

7.
Science ; 383(6684): 746-750, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359138

ABSTRACT

Chemical reactions are generally assumed to proceed from reactants to products along the minimum energy path (MEP). However, straying from the MEP-roaming-has been recognized as an unconventional reaction mechanism and found to occur in both the ground and first excited states. Its existence in highly excited states is however not yet established. We report a dissociation channel to produce electronically excited fragments, S(1D)+O2(a1Δg), from SO2 photodissociation in highly excited states. The results revealed two dissociation pathways: One proceeds through the MEP to produce vibrationally colder O2(a1Δg) and the other yields vibrationally hotter O2(a1Δg) by means of a roaming pathway involving an intramolecular O abstraction during reorientation motion. Such roaming dynamics may well be the rule rather than the exception for molecular photodissociation through highly excited states.

8.
Cell Death Differ ; 31(2): 239-253, 2024 02.
Article in English | MEDLINE | ID: mdl-38182899

ABSTRACT

Efferocytosis and metabolic reprogramming of macrophages play crucial roles in myocardial infarction (MI) repair. TREM2 has been proven to participate in phagocytosis and metabolism, but how it modulates myocardial infarction remains unclear. In this study, we showed that macrophage-specific TREM2 deficiency worsened cardiac function and impaired post-MI repair. Using RNA-seq, protein and molecular docking, and Targeted Metabolomics (LC-MS), our data demonstrated that macrophages expressing TREM2 exhibited decreased SLC25A53 transcription through the SYK-SMAD4 signaling pathway after efferocytosis, which impaired NAD+ transport into mitochondria, downregulated SLC25A53 thereby causing the breakpoint in the TCA cycle and subsequently increased itaconate production. In vitro experiments confirmed that itaconate secreted by TREM2+ macrophages inhibited cardiomyocyte apoptosis and promoted fibroblast proliferation. Conversely, overexpression of TREM2 in macrophages could improve cardiac function. In summary, our study reveals a novel role for macrophage-specific TREM2 in MI, connecting efferocytosis to immune metabolism during cardiac repair.


Subject(s)
Myocardial Infarction , Animals , Mice , Macrophages/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Succinates/metabolism , Humans
9.
Environ Toxicol ; 39(1): 421-434, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37792549

ABSTRACT

Papillary thyroid cancer (PTC) is a prevalent malignancy worldwide. Spleen tyrosine kinase (SYK) is a crucial enzyme that participates in various biological processes, including cancer progression. This study aims to uncover the biological function of SYK in PTC. SYK expression patterns in PTC were evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and western blot. Cell function assays were performed to assess the effects of SYK on PTC. Bioinformatics analysis was conducted to identify intriguing microRNA (miRNA) and circular RNA (circRNA). Dual-Luciferase Reporter or RNA immunoprecipitation assays were used to investigate the correlation among SYK, miR-377-3p, and hsa_circ_0006417. SYK was upregulated in PTC. Overexpression of SYK exhibited a positive correlation with tumor size, lymph node metastasis, and unfavorable disease-free survival. Functional assays revealed that SYK exerted tumorigenic effect on PTC cells through mTOR/4E-BP1 pathway. Mechanistically, hsa_circ_0006417 and miR-377-3p regulated SYK expression, offering modulating its tumor-promoting effects. Collectively, SYK acts as an oncogene in PTC through mTOR/4E-BP1 pathway, which is regulated by the hsa_circ_0006417/miR-377-3p axis, thereby providing a potential alternative for PTC treatment.


Subject(s)
MicroRNAs , RNA, Circular , Syk Kinase , Thyroid Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Syk Kinase/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/metabolism , TOR Serine-Threonine Kinases , RNA, Circular/genetics
10.
Nano Lett ; 24(1): 51-60, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37823474

ABSTRACT

The lateral flow immunoassay (LFIA) is a sought-after point-of-care testing platform, yet the insufficient sensitivity of the LFIA limits its application in the detection of tumor biomarkers. Here, a colorimetric signal amplification method, bimetallic nanozyme-mediated in situ-catalyzed reporter deposition (BN-ISCRD), was designed for ultrasensitive cancer diagnosis. The bimetallic nanozyme used, palladium@iridium core-shell nanoparticles (Pd@Ir NPs), had ultrahigh enzyme-like activity, which was further explained by the electron transfer of Pd@Ir NPs and the change in the Gibbs free energy during catalysis through density functional theory calculations. With gastric cancer biomarkers pepsinogen I and pepsinogen II as model targets, this assay could achieve a cutoff value of 10 pg/mL, which was 200-fold lower than that without signal enhancement. The assay was applied to correctly identify 8 positive and 28 negative clinical samples. Overall, this BN-ISCRD-based LFIA showed great merits and potential in the application of ultrasensitive disease diagnosis.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Immunoassay/methods , Biomarkers, Tumor , Catalysis , Neoplasms/diagnosis , Limit of Detection , Gold
11.
Plant Phenomics ; 5: 0123, 2023.
Article in English | MEDLINE | ID: mdl-38047001

ABSTRACT

Accurate segmentation and detection of rice seedlings is essential for precision agriculture and high-yield cultivation. However, current methods suffer from high computational complexity and poor robustness to different rice varieties and densities. This article proposes 2 lightweight neural network architectures, LW-Segnet and LW-Unet, for high-precision rice seedling segmentation. The networks adopt an encoder-decoder structure with hybrid lightweight convolutions and spatial pyramid dilated convolutions, achieving accurate segmentation while reducing model parameters. Multispectral imagery acquired by unmanned aerial vehicle (UAV) was used to train and test the models covering 3 rice varieties and different planting densities. Experimental results demonstrate that the proposed LW-Segnet and LW-Unet models achieve higher F1-scores and intersection over union values for seedling detection and row segmentation across varieties, indicating improved segmentation accuracy. Furthermore, the models exhibit stable performance when handling different varieties and densities, showing strong robustness. In terms of efficiency, the networks have lower graphics processing unit memory usage, complexity, and parameters but faster inference speeds, reflecting higher computational efficiency. In particular, the fast speed of LW-Unet indicates potential for real-time applications. The study presents lightweight yet effective neural network architectures for agricultural tasks. By handling multiple rice varieties and densities with high accuracy, efficiency, and robustness, the models show promise for use in edge devices and UAVs to assist precision farming and crop management. The findings provide valuable insights into designing lightweight deep learning models to tackle complex agricultural problems.

12.
Appl Opt ; 62(35): 9291-9298, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38108700

ABSTRACT

The stability of beam pointing in a laser system depends on the consistency of the optical mirror mount. Typically, a locking mechanism is used to secure the adjustment mechanism after beam alignment, ensuring the mount's stability. However, this process can introduce errors, causing a drift in the optical path. To mitigate this issue, in this study, an interference fit adjustment screw was designed. This development enables the mechanism to self-lock after beam alignment, thereby preventing optical path drift and enhancing overall stability. Specifically, 14 long-term thermal shock stability tests, each lasting 2500 min, were conducted to validate the proposed design. The experimental results showed that the thermal drift of the interference fit adjustment screw was reduced by 47.16%, thermal shift was reduced by 79.59%, and the long-term stability improved by at least 48.67%.

13.
Front Oncol ; 13: 1237308, 2023.
Article in English | MEDLINE | ID: mdl-37799479

ABSTRACT

Introduction: The distinction between multiple primary lung cancer (MPLC) and intrapulmonary metastasis (IPM) holds clinical significance in staging, therapeutic intervention, and prognosis assessment for multiple lung cancer. Lineage tracing by clinicopathologic features alone remains a clinical challenge; thus, we aimed to develop a multi-omics analysis method delineating spatiotemporal heterogeneity based on tumor genomic profiling. Methods: Between 2012 and 2022, 11 specimens were collected from two patients diagnosed with multiple lung cancer (LU1 and LU2) with synchronous/metachronous tumors. A novel multi-omics analysis method based on whole-exome sequencing, transcriptome sequencing (RNA-Seq), and tumor neoantigen prediction was developed to define the lineage. Traditional clinicopathologic reviews and an imaging-based algorithm were performed to verify the results. Results: Seven tissue biopsies were collected from LU1. The multi-omics analysis method demonstrated that three synchronous tumors observed in 2018 (LU1B/C/D) had strong molecular heterogeneity, various RNA expression and immune microenvironment characteristics, and unique neoantigens. These results suggested that LU1B, LU1C, and LU1D were MPLC, consistent with traditional lineage tracing approaches. The high mutational landscape similarity score (75.1%), similar RNA expression features, and considerable shared neoantigens (n = 241) revealed the IPM relationship between LU1F and LU1G which were two samples detected simultaneously in 2021. Although the multi-omics analysis method aligned with the imaging-based algorithm, pathology and clinicopathologic approaches suggested MPLC owing to different histological types of LU1F/G. Moreover, controversial lineage or misclassification of LU2's synchronous/metachronous samples (LU2B/D and LU2C/E) traced by traditional approaches might be corrected by the multi-omics analysis method. Spatiotemporal heterogeneity profiled by the multi-omics analysis method suggested that LU2D possibly had the same lineage as LU2B (similarity score, 12.9%; shared neoantigens, n = 71); gefitinib treatment and EGFR, TP53, and RB1 mutations suggested the possibility that LU2E might result from histology transformation of LU2C despite the lack of LU2C biopsy and its histology. By contrast, histological interpretation was indeterminate for LU2D, and LU2E was defined as a primary or progression lesion of LU2C by histological, clinicopathologic, or imaging-based approaches. Conclusion: This novel multi-omics analysis method improves the accuracy of lineage tracing by tracking the spatiotemporal heterogeneity of serial samples. Further validation is required for its clinical application in accurate diagnosis, disease management, and improving prognosis.

14.
Cell Mol Life Sci ; 80(11): 330, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856006

ABSTRACT

Dramatic alterations in epigenetic landscapes are known to impact genome accessibility and transcription. Extensive evidence demonstrates that senescent cells undergo significant changes in chromatin structure; however, the mechanisms underlying the crosstalk between epigenetic parameters and gene expression profiles have not been fully elucidated. In the present study, we delineate the genome-wide redistribution of accessible chromatin regions that lead to broad transcriptome effects during senescence. We report that distinct senescence-activated accessibility regions (SAAs) are always distributed in H3K27ac-occupied enhancer regions, where they are responsible for elevated flanking senescence-associated secretory phenotype (SASP) expression and aberrant cellular signaling relevant to SASP secretion. Mechanistically, a single transcription factor, TEAD4, moves away from H3K27ac-labled SAAs to allow for prominent chromatin accessibility reconstruction during senescence. The enhanced SAAs signal driven by TEAD4 suppression subsequently induces a robust increase in the expression of adjacent SASP genes and the secretion of downstream factors, which contribute to the progression of senescence. Our findings illustrate a dynamic landscape of chromatin accessibility following senescence entry, and further reveal an insightful function for TEAD4 in regulating the broad chromatin state that modulates the overall transcriptional program of SASP genes.


Subject(s)
Cellular Senescence , Chromatin , Chromatin/genetics , Cellular Senescence/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation
16.
J Am Chem Soc ; 145(32): 18084-18093, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37527432

ABSTRACT

Bioactive materials that can support cell adhesion and tissue regeneration are greatly in demand in clinical applications. Surface modification with bioactive molecules is an efficient strategy to convert conventional bioinert materials into bioactive materials. However, there is an urgent need to find a universal and one-step modification strategy to realize the above transformation for bioactivation. In this work, we report a universal and one-step modification strategy to easily modify and render diverse materials bioactivation by dipping materials into the solution of dibutylamine-DOPA-lysine-DOPA (DbaYKY) tripeptide-terminated cell-adhesive molecules, ß-peptide polymer, or RGD peptide for only 5 min. This strategy provides materials with a stable surface modification layer and does not cause an undesired surface color change like the widely used polydopamine coating. This one-step strategy can endow material surfaces with cell adhesion properties without concerns on nonspecific conjugation of proteins and macromolecules. This universal and one-step surface bioactivation strategy implies a wide range of applications in implantable biomaterials.


Subject(s)
Biocompatible Materials , Peptides , Biocompatible Materials/chemistry , Peptides/chemistry , Cell Adhesion , Lysine , Dihydroxyphenylalanine , Surface Properties
17.
Int J Biol Macromol ; 253(Pt 2): 126493, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37648125

ABSTRACT

This study aimed to investigate the recognition mechanism of dextranase (PC-Edex) produced by Penicillium cyclopium CICC-4022 on dextran. Whole genome information of P. cyclopium CICC-4022 was obtained through genome sequencing technology. The coding information of PC-Edex was determined based on the annotation of the protein-coding genes using protein databases. The three-dimensional structure of PC-Edex was obtained via homology modelling. The active site and binding free energy between PC-Edex and dextran were calculated by molecular docking and molecular dynamics techniques. The results showed that the total sequence length and GC content of P. cyclopium CICC-4022 were 29,710,801 bp and 47.02 %, respectively. The annotation of protein-encoding genes showed that P. cyclopium CICC-4022 is highly active and has many carbohydrate transport and metabolic functions, and most of its proteases are glycolytic anhydrases. Furthermore, the gene encoding PC-Edex was successfully annotated. Molecular dynamics simulations indicated that van der Waals interaction was the main driving force of interaction. Residues Ile114, Asp115, Tyr332, Lys344, and Gln403 significantly promoted the binding between dextran and PC-Edex. In summary, this study explored the active site catalyzed by PC-Edex based on the binding pattern of PC-Edex and dextran. Therefore, this study provides genomic information on dextranase and data supporting the rational modification and enhancement of PC-Edex.


Subject(s)
Dextranase , Penicillium , Molecular Docking Simulation , Dextranase/metabolism , Dextrans , Alprostadil , Penicillium/genetics , Penicillium/metabolism
18.
Trends Plant Sci ; 28(11): 1326-1327, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37580224
19.
J Cell Physiol ; 238(8): 1788-1807, 2023 08.
Article in English | MEDLINE | ID: mdl-37565630

ABSTRACT

Despite the initiation of tumor arises from tumorigenic transformation signaling in cancer cells, cancer cell survival, invasion, and metastasis also require a dynamic and reciprocal association with extracellular signaling from tumor microenvironment (TME). Primary cilia are the antenna-like structure that mediate signaling sensation and transduction in different tissues and cells. Recent studies have started to uncover that the heterogeneous ciliation in cancer cells and cells from the TME in tumor growth impels asymmetric paracellular signaling in the TME, indicating the essential functions of primary cilia in homeostasis maintenance of both cancer cells and the TME. In this review, we discussed recent advances in the structure and assembly of primary cilia, and the role of primary cilia in tumor and TME formation, as well as the therapeutic potentials that target ciliary dynamics and signaling from the cells in different tumors and the TME.


Subject(s)
Cilia , Neoplasms , Humans , Cilia/pathology , Tumor Microenvironment , Neoplasms/pathology , Signal Transduction
20.
Handb Exp Pharmacol ; 281: 235-255, 2023.
Article in English | MEDLINE | ID: mdl-37563250

ABSTRACT

The rhythmically beating heart is the foundation of life-sustaining blood flow. There are four chambers and many different types of cell in the heart, but the twisted myofibrillar structures formed by cardiomyocytes are particularly important for cardiac contraction and electrical impulse transmission properties. The ability to generate cardiomyocytes using human-induced pluripotent stem cells has essentially solved the cell supply shortage for in vitro simulation of cardiac tissue function; however, modeling heart at the tissue level needs mature myocardial structure, electrophysiology, and contractile characteristics. Here, the current research on human functionalized cardiac microtissue in modeling cardiac diseases is reviewed and the design criteria and practical applications of different human engineered heart tissues, including cardiac organoids, cardiac thin films, and cardiac microbundles are analyzed. Table summarizing the ability of several in vitro myocardial models to assess heart structure and function for cardiac disease modeling.


Subject(s)
Heart Diseases , Myocytes, Cardiac , Humans , Cell Differentiation , Myocytes, Cardiac/metabolism , Myocardium , Tissue Engineering , Heart Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...